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Many electronic systems, such as computers, TV’s and mobile phones have

an audio interface, which in these days is implemented as an embedded

system containing hardware and software. Typically programming errors in

software side may cause problems in audio output in any device.

The final acceptance testing is almost always done manually using measure-

ments in audio lab accompanied with listening tests for true user experience.

To find problems in the early phases of the device development, some parts

of the audio quality testing can be automated to be run for example every

night. In the optimal situation this partial test automation will save some

time from the manual testing effort.

1 Test bench examples

To test the complete system or only the software?

If it is desired to test the complete system, one needs to choose the piece of

hardware which handles the recording of the audio output. Typically a high-

class computer sound card will be sufficient recording device. If the device

has a headphone connection, then audio can be recorded through the line-

out of the device. Other option is to build an acoustically isolated test room

or a smaller scale test box, and use an external microphone to record the

audio. For acoustic measurements a cheap electret microphone has proven

to be sufficient.

If only software needs to be tested, then save the audio data in the device

itself with some custom test software, and analyse the saved audio clips later

using the methods listed in the following sections.

2 Correlation calculations

This seems to be the primary method to verify audio integrity, typically not

considered suitable for quality verification. A practical implementation of

this method uses a pre-recorded audio sample, which is proven to be fault-

less. This pre-recording is used as a reference sample. Then the correlation

against the reference is evaluated in each test run, where a new test sam-

ple is recorded each time. For faulty parts the evaluated correlation drops

significantly. The accuracy of the analysis can be controlled by adjusting the
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sub-sample size, for which each correlation value is evaluated. So the refer-

ence sample is sub-sampled for a certain amount of bits and these bits are

correlated against the sample to be tested. Figure 1 gives the preliminary

idea of the method. When moving the sub-sample of the reference against

a portion of the test sample, the most similar part will give the maximum

value of correlation. Obviously the sub-sample from the test sample needs to

be larger than the sub sample from the reference, so that a sifting alignment

is possible to find the best correlation value. This way it is also possible to

find out the time lag between the samples. After some maths of the correla-

tion calculations have been introduced, a practical use of this method will be

described.

Figure 1: Cross correlation function for real audio signal with reference part

The comparison of two data series, say f and g is implemented using the

cross correlation function f ⋆ g, that is usually defined as

(f ⋆ g)n =
∞
∑

m=−∞

f ∗

m · gn+m. (1)

The cross correlation function is a set of data points, which give a measure of

similarity between two data sets and the index of a certain cross correlation

function value can be used to determine the delay between points of two
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discrete data sets. Here f can be selected to depict the reference file and g

is then the recorded data. As the cross correlation function gives a measure

of similarity, a reference value is still needed to give a comparable value

to determine the actual similarity of the two signals. This reference value is

obtained by calculating the autocorrelation f ⋆f of a discrete data set. Figure

2 depicts the autocorrelation function of a simple sine wave.

Figure 2: Autocorrelation function of a simple sine wave

In practise we do not have infinite amount of data points in our data series so

that the cross correlation equation (1) could be determined better this way:

(f ⋆ g)n =
K
∑

m=−K

f ∗

m · gn+m, (2)

where K is some constant that defines the frame size FS ∈ [−K,K] from the

reference file point of view.

So by calculating the autocorrelation from the reference signal and compar-

ing it to the cross correlation values calculated from some closed interval

[−K,K], the similarity is found when the difference between autocorrela-

tion value and some specific cross correlation value reaches some kind of

minimum. It is also assumed that where the cross correlation has a maxi-

mum value, it indicates the point where the two data sets are most similar

in comparison. Based on these two facts, the difference in similarity can be
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then obtained, e.g. by calculating the relative difference between the auto-

correlation and cross correlation maximum values:

∆X =
f ⋆ f −max(f ⋆ g)

f ⋆ f
, (3)

The most critical part of this correlation calculation is the primary alignment

of the two data sets. For this the general definition of cross correlation func-

tion in equation (1) can be used assuming that the maximum value of this

function finds the correct alignment of the two data sets. Because now we

are connected with the theories of statistics and probabilities, the more data

points are taken to the calculation of the correlation, the more likely it is to

find the correct alignment point of the two data sets. But please note that

this is not a fool proof method of finding the correct alignment in any case.

Probabilities can be very tricky! The proper alignment is found most easily

for randomly varying signals. For continuously repeating signals, such as a

sine wave, the proper alignment cannot be found without some extra checks.

The calculation procedure for the cross correlation from equation (1) is quite

simple, but it takes a lot of computing resources because of the large amount

of multiplications done during the calculation. There exists a connection

between multiplication in the frequency domain and correlation in the time

domain. The correlation calculation for large data sets can be made much

more faster by first applying a Fast Fourier Transform to the data sets and

doing a multiplication in the frequency domain:

F(f ∗ g) = F(f)F(g),

F(f ∗ g) = Fk ·Gk

(4)

The equation (4) implies that the multiplication in the frequency domain is

done component by component and when taking the inverse FFT from the

multiplication result, we have the original correlation function:

(f ∗ g) = F−1 [F(f)F(g)] . (5)

Few questions arise... How can we here determine the different values of cor-

relation for some interval [−K,K] when both of the data series must have

the same amount of data points when doing the FFT calculation? The cor-

relation via FFT should be understood as a circular correlation where the

reference signal is "moved" along the recorded data points so that the last

value in the reference frame jumps to the first position in the frame. The idea
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of multiplication is otherwise exactly the same as in the normal correlation

calculation. Let’s take a little example, where x is a frame from the reference

data set and y is part of the acquired data set:

x = {2, 3, 0, 0} ; y = {1, 2,−3, 5, 1, 2,−3, 5}

The cross correlation function between these is by equation (1):

(x ⋆ y) = {8, 0, 9, 13, 8},

where n ∈ [−2, 2]. Now let’s reduce the frame y to have the same amount of

data points as x. Of course we need to also make sure that the amount of

data points is suitable for the FFT in general, i.e. some exponent of 2:

x = {2, 3, 0, 0} ; y = {1, 2,−3, 5}.

After FFT, multiplication in the frequency domain, and inverse FFT, we get:

(x ⋆ y) = {8, 0, 9, 13},

so that the length of the cross correlation function (x ⋆ y) is the same as the

data sets under examination. Here the indices will in general start from 0,

but please note that the first 4 values of the cross correlation function are the

same as the result via the normal correlation multiplication. Also note that

the recorded samples are extended to be periodic in the first calculation. This

depicts the periodical behaviour and the cyclic nature of the cross correlation

calculation in the frequency domain via FFT.

The point here is that both of the methods give the same results if the refer-

ence data set is smaller than the recorded set, so that the periodicity effects

of the FFT calculation can be worked around. The reference data is here

padded with zeros to make the example more clear. In the FFT correlation

scheme the first index of the correlation function represent the index where

the two data series are perfectly aligned, then the following indices’ values

correspond to the delay of the recorded signal with respect to the reference

signal. When the indices reach the point where only N−Nref indices remain,

these inform if the reference signal is delayed with respect to the recorded

signal. Unfortunately this does not tell the truth about the delay of the ref-

erence, because we don’t have the real information about the behaviour of

the recorded signal outside the frame of reference. The FFT just assumes the

signal to be periodic.
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After the preliminary matching of the signals has succeeded, we can use the

normal time domain multiplication to determine the correlation and just take

slightly bigger frame from the recorded signal to follow the possible align-

ment change during the correlation calculation. This makes the calculation

procedure a bit faster.

The correlation function as defined by equation (1) is quite prone to errors.

Lots of problems arise for example from such a common thing as an ampli-

tude difference between the two signals to be compared. In the general case

when multiplying two numbers, say x and y, with errors in them, we have:

x · y = (x+∆x) · (y +∆y) = x · y + x ·∆y + y ·∆x+∆x ·∆y (6)

Therefore the error introduced in the correlation calculation is expressed as

∆(f ⋆ g)n =
∞
∑

m=−∞

gn+m ·∆f ∗

m + f ∗

m ·∆gn+m +∆f ∗

m ·∆gn+m, (7)

but in this case when the reference data is naturally expected to be constant,

equation (7) reduces to

∆(f ⋆ g)n =
∞
∑

m=−∞

f ∗

m ·∆gn+m. (8)

Since we are expecting the two data sets to have some similarity, perhaps

the best way is to express the whole cross correlation function (1) with error

added with respect to the other data set, so that the difference between the

two data sets is seen as an error ∆fn+m in the other data set:

(f ⋆ g)n =
∞
∑

m=−∞

f ∗

m · gn+m = f ∗

m · (fn+m −∆fn+m) (9)

When performing the multiplication in (9) we have

(f ⋆ g)n =
∞
∑

m=−∞

f ∗

m · fn+m − f ∗

m ·∆fn+m (10)

and by expanding with fn+m:

(f ⋆ g)n =
∞
∑

m=−∞

f ∗

m · fn+m − f ∗

m · fn+m ·∆fn+m

fn+m

=
∞
∑

m=−∞

f ∗

m · fn+m ·
(

1− ∆fn+m

fn+m

)

(11)
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Equation (11) will help us to solve the error differences that come from con-

stant amplitude difference between the two compared signals. Assuming

that data sets f and g are otherwise similar, but have a constant amplitude

difference, then the fraction
fn

gn
gives the same constant value at every point

n in the data series. This fraction corresponds to the term
∆fn+m

fn+m

in equa-

tion (11), which becomes therefore a constant value expression and when

inserting the results from equation (11) to the equation (3), we get:

∆X =

∑

f ∗

m · fn+m −∑

f ∗

m · fn+m ·
(

1− ∆fn+m

fn+m

)

∑

f ∗

m · fn+m

=
∆fn+m

fn+m

,

(12)

which is equivalent to the relative error term of the reference signal.

Luckily there is a workaround for neglecting the amplitude difference. What

if one would consider the compared data arrays to be vectors? The correla-

tion function (1) looks quite similar to the dot product calculation between

two vectors. And indeed, in practise the cross correlation equation (1) corre-

sponds the dot product:

~a •~b = a1b1 + a2b2 + . . .+ anbn =
n

∑

i=1

aibi = a ⋆ b. (13)

Vectors have a very unique property, which applies for all dimensions: nor-

malisation. Vector magnitude is defined as

|~a| =
√
~a • ~a =

√
a1a1 + a2a2 + . . .+ anan. (14)

When dividing the original vector ~a with the lenght |~a| (i.e. magnitude), we

have a unit vector

â =
~a

|~a| . (15)

When extracting the magnitude as a separate entity and using only the unit

vectors for calculating the correlation, the cross correlation function â ⋆ b̂ will

not be sensitive to amplitude differences, it tests only the similarity of the

signals and does not care about the magnitude. If the amplitudes need to be

tested equal, then the magnitudes can be used for asserting that.

Unfortunately (at least to my knowledge) the cross correlation calculated via

FFT cannot be normalised, so the correlation calculation using normalised

vectors need to be done using normal multiplication process.
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So based on the information presented above, the practical implementation

of a cross correlation testing for audio signals should be done as follows.

Prepare the reference audio sample so that the recorded test audio sample

always lags the reference when starting the correlation analysis. Use the Fast

Fourier Transform only once to find the maximum correlation value from a

relatively long subset of the test sample. This will reveal the primary lag

value of the signals and it can be used for making a primary lag adjustment

for the reference and the test samples.

Because Fast Fourier Transform is used to calculate the correlation the size

taken from the recorded signal must be a power of 2, e.g. 262144 sam-

ples. The amount of samples taken from the reference data should be large

enough to get a reliable correlation result, but must be also lot smaller than

the amount of samples taken from the recorded test signal. The effective

number of cross correlation values is N − Nref , where N is the amount of

samples taken from the recorded test signal and Nref the amount of samples

from the reference data respectively. Empiric observations have proven that

about 50 000 samples taken from the reference signal gives quite reliable

correlation results. When using e.g. 40 kHz sampling frequency, we take

about one second subset from the reference file and the largest possible lag

in the recorded data can be about 5 seconds when 262144 samples is taken

to the analysis.

When the primary alignment of the signals has been made, the correlation

calculation proceeds in the file by taking some predetermined frame size of

data from the reference file and compares this to a frame of samples taken

from the recorded test file. The frame size for the recorded file is a little

larger than the reference file frame size, because this way one can follow the

possible change in delay between the two signals over time. In practice the

samples read from the recorded test file is < 100 samples more compared

to the reference data subset. Note that in this phase we are using the vector

multiplication. This process can be made lightning fast if we take only 6 or

8 samples more from the recorder test file compared to the reference. The

lag should be followed all the time and if it seems that the lag growing to

be more than ±3 samples, then make a new lag correction and continue the

vector multiplication.

Defects found using the correlation method are typically small breaks in the

audio stream as shown in Figure 3. These are easy verify later on from the
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recorded audio file.

Figure 3: A break in the recorded test file

Other small differences are not so evident, and they typically need some

more investigations of the true root cause. Obviously there is something

different in the signals shown in Figure 4...

Figure 4: Slight differences between the reference and the recorded test file
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3 Derivative calculations

The basis for the derivative analysis is to use sinusoidal test signals. The

derivative of a sine wave is a cosine wave and vice versa. The basic difference

between sine and cosine is only 90 degrees phase difference. The maximum

value of a sinusoidal derivative is easily determined, so when the signal is

pure sine it should be easy to verify against the maximum value that there

is no extra disturbances in the signal. The derivative analysis is intended to

reveal fast unexpected disturbances in the signal, like snaps and pops.

Numerical mathematical methods define the difference ∆f(x) between two

consecutive data points

∆f(x) = f(x+ k)− f(x). (16)

This equation (16) is known as the forward difference formula. Naturally

there exists a backward difference formula

∇f(x) = f(x)− f(x− k), (17)

and the central difference equation:

∆f(x) +∇f(x) = f(x+ k)− f(x− k). (18)

These formulas can be extended as numerical derivatives when bringing in

the slope property of the derivative. Then the relative change in some vari-

able, call it x, can be determined via difference formulas.

∆f(x)

∆x
=

f(x+ k)− f(x)

∆x
=

f(x+ k)− f(x)

x+ k − x
=

f(x+ k)− f(x)

k
. (19)

When combining the forward and backward difference formulas, a derivative

based on the central difference is obtained.

∆f(x) +∇f(x)

∆x
=

f(x+ k)− f(x) + f(x)− f(x− k)

∆x

=
f(x+ k)− f(x− k)

x+ k − (x− k)

=
f(x+ k)− f(x− k)

2k
.

(20)
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All of these numerical derivative equations are officially derived from the

Taylor series expansion by taking the first terms of the series, making the

proper substitutions and subtractions.

The amplitude and the fundamental frequency need to be determined be-

fore the derivative analysis can work effectively. The fundamental frequency

f0 can be determined by following the signal zero crossings and using the

equation

f0 =
fs

N
, (21)

to get the actual fundamental frequency of the signal. The notation fs means

the sampling frequency, and N is the amount of samples between two con-

secutive zero crossings. Of course it is expected that the measured signal is

clean as possible so that the fundamental frequency would be easy to deter-

mine.

The amplitude of the signal can be determined by e.g. summing the absolute

values of minimum and maximum values, taking the average and dividing

by two. Much better option would be to calculate the amplitude of each

period by Discrete Fourier Transform. Then take the average of all calculated

amplitudes. Again, the cleaner the measured signal is, the more accurate the

result is.

Without worrying too much about strict mathematical formalism, the differ-

ential of the sine wave can be calculated as:

d[A · sin(ωt)] = A · sin(ω[t+ dt])− A · sin(ωt)
dt

· dt = Aω · cos(ωt)dt,

where

ω = 2πf0 = 2π
fs

N
,

and now because now we are not handling the infinitesimal differentials, we

can use a notation change dt 7−→ ∆t, where the ∆t in this context is the

reciprocal value of sampling frequency. Now we still want to normalise the

derivative to a unity value, which ∀t ∈ R[−1, 1]. That can be done like this:

Aω · cos(ωt)∆t

∣

∣

∣

∣

∣

: Aω∆t

⇒ cos(ωt)
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To get the differential of a basic sine wave A · sin(ωt) normalised as a cosine

wave with unity amplitude, the differential needs to be divided with a factor

Aω∆t. In this case we would get

A sin(ω[t+∆t])− A sin(ωt)

Aω∆t
=

A sin(ω[t+∆t])− A sin(ωt)

A2π
N

= cos(ωt).

This way the value of the derivative of the test signal will stay between the in-

terval [-1, 1] and if the signal has some changes faster than the fundamental

frequency, those will be detected as values larger than |1|. In practical testing

one can then use some constant value as a limit for a failing case. The fol-

lowing two figures show a clean sine and its derivative, which is normalised

to have unity amplitude.
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Then the following two figures show a defected sine wave and its derivative.

From here it is easy to assert that the amplitude of the derivative signal is

over 1.
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4 Discrete Fourier Transform

The DFT calculation can be used in audio testing, especially when the test

signal is analytic and composed of several harmonic sine waves, whose am-

plitude relation is known beforehand. Then the DFT can be used to evaluate

the amplitudes of each component and make assertions accordingly.

The fundamental idea of the whole Fourier analysis is that any periodic func-

tion f(x, ...) can be modelled with sums of sines and cosines of harmonic

frequencies

f(x) = a0 +
∞
∑

n=1

(an cosnx+ bn sinnx). (22)

The idea of Fourier series extends also to a set of transforms both continuous

and discrete time. The discrete Fourier Transform (DFT) Xk of data series xn

is usually defined as:

Xk =
1

N

N−1
∑

n=0

xn · e−i2πk n

N , (23)

where N is the total amount of the numbers in the data sequence xn. In

this version there exists also a normalisation factor
1

N
in front, but usually

this is connected to the inverse DFT. This normalisation coefficient is essen-

tial if one wants to dig out the true amplitudes of the harmonic frequency

components from the data series xn. With the help of Euler equations

einx = cosnx+ i sinnx

e−inx = cosnx− i sinnx
(24)

The DFT can be written in the form:

Xk =
1

N

N−1
∑

n=0

xn ·
[

cos
(

2πk
n

N

)

− j sin
(

2πk
n

N

)]

(25)

and the equation (25) can still be separated into real and imaginary parts:

ℜ(Xk) =
1

N

N−1
∑

n=0

xn · cos
(

2πk
n

N

)

ℑ(Xk) =
1

N

N−1
∑

n=0

−j · xn · sin
(

2πk
n

N

)

(26)

The basic idea behind the DFT is to calculate a correlation between the data

series xn and harmonic frequencies k of the fundamental frequency deter-

mined by the sample size N which represents the amount of samples in one
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full period of xn. So the periodicity assumption from the trigonometric series

is still there... The possible phase difference is covered by calculating both

the sine and cosine correlation, and the result is a squared sum of these two

components.

When examining the definition of the inverse DFT:

xk =
N−1
∑

n=0

Xn · ei2πk
n

N , (27)

it can be noticed that the values Xk obtained from the DFT are equivalent

to the amplitude coefficients of the complex Fourier series. From the Euler

equations (24) also follow the results

einx + e−inx = 2 · cosnx ⇒ cosnx =
1

2

(

einx + e−inx
)

(28)

einx − e−inx = 2 · i sinnx ⇒ sinnx =
1

2i

(

einx − e−inx
)

(29)

and inserting these to the trigonometric Fourier series (22) it follows that

f(x) = a0 +
∞
∑

n=1

(

1

2
an ·

[

einx + e−inx
]

− 1

2
ibn ·

[

einx − e−inx
]

)

= a0 +
∞
∑

n=1

(

1

2
[an − ibn] · einx +

1

2
[an + ibn] · e−inx

)

=
∞
∑

n=−∞

cn · einx

(30)

The last form in (30) needs a little explanation. The sum is extended to cover

the whole set of integers from −∞ to +∞ and use the notations

cn =
1

2
(an − ibn) = Xn

c−n =
1

2
(an + ibn)

c0 = a0

(31)

This gives a relation to the amplitudes of the complex (cn) and real (an, bn)

forms of the Fourier series. Hence, this implies that from the results of DFT

one can determine true amplitudes of the harmonic frequency components

of any signal.
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In the general case, where the complex amplitudes have both real and imag-

inary parts, the real amplitude of some harmonic frequency can be deter-

mined by calculating the squared sum

Ak = 2 ·
√

ℜ(Xk)2 + ℑ(Xk)2 =
√

a2k + b2k. (32)

Also the phase information is included in the amplitude spectrum and it can

be obtained from:

φk = arctan
ℑ(Xk)

ℜ(Xk)
(33)

The simplest way to prove that the DFT gives the true amplitudes of the

harmonic components of a given data set, is to do a simple calculation using

the sine wave as the test signal. Suppose that we have only the fundamental

frequency of pure sine wave with amplitude A in our system to be measured.

We measure through an AD converter exactly one full period of the sine wave

with N samples. Then we do the DFT to the fundamental frequency:

1

N

N−1
∑

n=0

A · sin
(

2π
n

N

)

· sin
(

2π
n

N

)

=
A

N

N−1
∑

n=0

[

sin
(

2π
n

N

)]2

=

A

N

N−1
∑

n=0

[

1

2i

(

ei2π
n

N − e−i2π n

N

)

]2

=
A

N

N−1
∑

n=0

−1

4

(

ei4π
n

N − 2 + e−i4π n

N

)

=

A

N

N−1
∑

n=0

1

2
− 1

2
cos

(

4π
n

N

)

=
A

N
· N
2

−
N−1
∑

n=0

1

2
cos

(

4π
n

N

)

=
A

2

(34)

So we get N times the half value of the real amplitude of the sampled sine

wave. This N is divided out by the normalisation factor defined in (23). The

cosine term in the equation is always zero, when the sampling frequency

is an exact multiple of the measured sine wave frequency. Otherwise the

cosine term adds the spectral leaking properties to our system because of

asymmetric sampling or wrong truncation point of the measured signal. Also,

one must be careful to truncate the test signal to contain exactly one full

period, otherwise spectral leaking will follow. So in the DFT analysis this

can be thought as using a rectangular window function with amplitude 1 to

multiply the original signal. The most important point is that we can get the

original amplitude of the signal by dividing by N and multiplying with 2.
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5 Total Harmonic Distortion

Distortion of the signal is quite difficult to define for a general signal that

has an undefined number of different frequencies present. For simple test

signals such as sine, square, sawtooth etc. the distortion is much more eas-

ier to define. The total harmonic distortion compares the amplitudes of the

harmonic overtones to the amplitude of the fundamental frequency. There

are several different definitions for the THD in different branches of technol-

ogy areas. In audio frequency calculations the Total Harmonic Distortion is

usually defined as:

THD =

√

A2
2 + A2

3 + A2
4 + · · ·+ A2

n

A1

, (35)

where the amplitudes of the harmonic frequencies An are square-summed

("power domain sum") and divided by the amplitude of the fundamental fre-

quency A1. The value of THD is commonly expressed as percentage from

the amplitude of the fundamental frequency. When using simple test signals

where the overtone structure of the signal is theoretically known, it is possi-

ble to use the THD to measure the actual distortion i.e. the transient effects

of the system under analysis.

The following picture comparison illustrates the THD value together with

the DFT analysis as it could be used in locating audio problems in automated

testing. Notice how the DFT analysis gives the correct amplitude value for the

simple sine wave. The excess THD found from the clean sine wave is coming

trough because of the sampling frequency is not a multiple of the tested

wave and the truncation point has not been able to isolate on full period of

the wave. This is typical and acceptable. The full wave can be extracted

automatically for analysis by following the zero crossings of the measured

signal. When using a simple sine wave or a set of harmonic sinusoids this

will work nicely.
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To locate actual errors the THD works pretty well as illustrated below:
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