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1 Introduction

Feedback is a fundamental concept in all fields of engineering. In electronics

negative feedback is used for stabilising gain, modifying impedance, extend-

ing bandwidth and reducing noise. References to the terms of DC and AC

feedback imply that the feedback stabilises and enhances either DC or AC

behaviour of the circuit. Typically the feedback is a mixture of AC and DC

feedback. The most important parameters to describe feedback are the re-

turn ratio T and the feedback factor β. The following discussion and analysis

aims to explain how these parameters are evaluated and what do they actu-

ally mean in practice.

Before getting down to business, it is worth mentioning a good tool for

analysing feedback in electronics and in general: the signal flow graph. Fig-

ure 1 introduces the most basic elements used for visualising a complete

signal chain as a flow graph. The key point is to understand how the mul-
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Figure 1: Basic forms of signal flow functions and their ’simplifications’

tipliers Gx between two junctions are related to each other when the flow

graph is simplified by reducing the number of branches. The mathematical

’proof’ of these multiplier combinations is simple; for example the bottom

signal flow is evaluated as

X2 = G1X1

X2 = G2X3 → X3 =
G1

G2

X1.

The multiplier is applied to the junction from where the arrow leaves and

the result of this multiplication is the junction where the arrow points to.

A general feedback cycle is easily demonstrated with the signal flow graph of

Figure 2. The form of presentation is adapted from the textbook of Millman
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Figure 2: Signal flow graph to explain feedback

(Microelectronics 2nd ed.). The idea is to introduce a new set of ’two-port’

parameters t11, t12, t21, t22, which act as multipliers between the branches of

the feedback circuit. The method of evaluating the multipliers is to utilise the

idea of superposition. When evaluating each multiplier one by one, some of

the junctions (voltage or current sources) are given a zero value to isolate a

specific section of the circuit. The dashed line between Xi and X̂i should be

interpreted as if the connection between these two points had been broken.

Since X̂i is just a parameter related to the controlled source, the connection

between Xi and X̂i in the small signal model can be directly considered as

’broken’ and the circuit configuration does not need any changes for calcula-

tions. Detailed examples of this method are to follow later on.

The simplified equation for the feedback signal flow is derived by writing the

equations

Xi = t21Xs + t22Xo (1)

X̂i = Xi (2)

Xo = t12X̂1 + t11Xs (3)

and then simply solving the relation between the input Xs and the output

Xo. When comparing to the "general equation" of feedback,

Xo =
t11 + t12t21

1− t12t22
Xs =

AOL

1 + T
Xs, (4)

each of the parameters are given their special meaning. The mathematical

definitions for the parameters are stated as:
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On the right side of each definition is an indication which source should be

set to zero when evaluating the parameter. The source can be current or

voltage depending on the feedback configuration. Often the trickiest part

is to handle the output source correctly when evaluating t21. It helps to

think that when setting the output source to zero, the output signal should

be isolated so that no signal goes to the feedback loop. When considering

parameters t12 and t21, the feedback part of the circuit is typically seen as a

load and therefore is a natural part of these parameters. The return ratio T

is a very useful parameter, which is especially needed when evaluating the

impedance changes due to the feedback configuration.

Typically circuits with feedback loops are analysed by extracting the ampli-

fier gain path and the feedback path as separate parameters. By the rules

indicated in figure 1, the gain path forward transmission transfer function is

Xo

Xs

= t12t21. (5)

If the feedforward path t11 is neglected (as is typically safe to do), then the

so called open loop gain AOL = t12t21. With the same reasoning the feedback

path reverse transmission transfer function is

Xs

Xo

=
t22

t21
= β. (6)

So the general idea is to evaluate a transfer function between input and

output to both directions of signal flow and indicate them as AOL and β. The

most interesting feedback parameter is the feedback factor β, which describes

the reverse transmission of the feedback network. Quite often approximate

feedback analysis methods give a false meaning to β, as if it would be a factor

related to t22 path only. Generally β describes the reverse transfer function

where the output node Xo is taken as the signal source and the source node

Xs is treated as the end point of the feedback signal.

The input and output impedances of a circuit with feedback can be evaluated

using the Blackman’s impedance formula

ZF = ZD

1 + TSC

1 + TOC

, (7)

where ZD is the input or output impedance evaluated from a ’dead system’

(gain is set to zero) and TSC , TOC are the return ratio T evaluated in short-

circuited (SC) and open-circuited (OC) conditions respectively. Typically it

is enough to evaluate T once according to its definition and then in the ob-

tained equation set values 0 (short) or ∞ (open) to the input and terminating
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impedances (Rs and RL). The ’dead system’ is obtained by suppressing the

controlled source (X̂i = 0) just like it is done when evaluating the t11 feed-

forward parameter. The ’dead system’ input and output impedances ZID and

ZOD are then evaluated from the zero-gain system. These impedances are

scaled with the return ratio depending on the feedback configuration used.

Concrete examples will follow later on.

The following little snippet demonstrates the effect of two different feedback

configurations, which are applied to the same direct-coupled pair BJT ampli-

fier setup. Negative feedback is used mostly for making the amplifier more

stable with respect to some critical parameter, mainly current or voltage gain

and enhancing the input and output impedances of any gain stage within a

circuit.

The analysed circuit is a BJT direct-coupled pair circuit as shown in Figure 3.

This basic form of the circuit does not contain any global feedback loops. In

the upcoming analysis the circuit is treated as a current amplifier by adding a

current-shunt feedback loop and as a voltage amplifier by adding a voltage-

series feedback loop.

C1

Q1

RC1

Q2

RC2

VCC

RB1

RE2 CE2

Vout

Vs

Rs

Figure 3: A bipolar junction transistor direct-coupled pair amplifier
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2 Current-shunt feedback

The current-shunt feedback is typically applied in current amplifiers, where

the output current is sampled and fed back to the input in a parallel (shunt)

connection. This feedback configuration is also known as the ’shunt-series’

type because the output current is probed by a series connection (parallel

probing of current is not possible). In the feedback analysis the amplifier

element is modelled as a general ’two-port’ system (see Figure 4), from where

the series and shunt connections are easily distinguished.

RsIs rπ gmiπrπ ro RC2||RL

iπ

iout

amplifier circuit

feedback circuit

RE2

RF

CE2

Figure 4: A current amplifier with shunt feedback

The feedback network in Figure 4 is implemented as a simple passive current

divider, where the output current is divided between resistors RF and RE2.

The capacitor CE2 acts as a short circuit for AC currents so that the feedback

loop in this case is closed for DC current only. The feedback configuration is

drawn specifically this accurately to relate to the circuit under analysis.

An example amplifier structure using the current-shunt configuration is shown

in Figure 5. This configuration is chosen because it is used as a basis in the

early ’fuzz-face’ and ’wah-wah’ guitar effect devices. The feedback loop is

implemented by connecting the emitter of the second amplifier stage to the

base of the first amplifier stage via resistor RF . As already mentioned, the

feedback loop is closed only for direct current. Therefore, the feedback is

used here mainly to enhance the biasing stability of the amplifier. To see
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C1

Q1

RC1 10 kΩ

VC1 Q2

RC2 5 kΩ

VCC

12 V

VE2

RF

150 kΩ

RE2 2 kΩ 20 µFCE2

VC2 Vout

Vs

Rs

Figure 5: A direct-coupled pair amplifier with current-shunt feedback

the effects of the feedback loop, the amplifier should be given an in-depth

analysis from the viewpoint of DC and AC operation.

2.1 DC analysis

The DC model is redrawn for analysis purposes in Figure 6. Clearly the

feedback loop is used for giving the needed base current for transistor Q1.

A reasonably systematic method for the DC bias analysis is to examine the

independent voltage nodes of the circuit. The direct current model in Figure

6 has two distinct voltage nodes, labelled as VC1 and VE2. It is also beneficial

to notice that VE2 = VC1 − VBE2. This reduces the number of distinct voltage

nodes to one.

Based on Kirchhoff’s current law, the sum of currents entering a node equals

the sum of currents leaving a node. Therefore, the current equations for the

voltage nodes VE2 and VC1 are:

I ′E2 = IE2 − IB1 = (βF2 + 1)IB2 − IB1

I ′C1 = IC1 + IB2 = βF1IB1 + IB2.

These equations can be combined to eliminate the base current IB2 and then
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Q1

IC1

IE1

IB1

I ′C1

RC1 10 kΩ

VC1

IC2

IE2

IB2

I ′E2

Q2

RC2 5 kΩ

VCC = 12 V

VE2

RF

150 kΩ

RE2 2 kΩ

−

+
VBE1

−

+
VBE2

Figure 6: A DC model of the amplifier with current-shunt feedback

the current equation reads

I ′C1 = βF1IB1 +
I ′E2

βF2 + 1
+

IB1

βF2 + 1
.

These currents can be expressed with the node voltages as:

I ′E2 =
VE2

RE2

; I ′C1 =
VCC − VC1

RC1

; IB1 =
VE2 − VBE1

RF

and after substituting the voltage equations,

VCC − VC1

RC1

= βF1
VE2 − VBE1

RF

+
VE2

RE2(βF2 + 1)
+

VE2 − VBE1

RF (βF2 + 1)
.

With the fact that VE2 = VC1−VBE2, one has an equation from where the volt-

age VC1 can be solved. Based on this analysis, all the other biasing voltages

and currents can also be solved.

2.2 AC analysis

Next the focus moves to the AC feedback analysis, which for the given circuit

is simple: there is no AC feedback because of capacitor CE2. But since it

would be nice to introduce the tools for feedback analysis, let’s remove all

the capacitors from the circuit and analyse the feedback properties of the

circuit at mid-frequency range.
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Considering the frequency response (AC) analysis, it is necessary to redraw

the circuit using the small-signal model of the BJT. A low-frequency BJT

model is sufficient in this case because the focus is on the audio frequency

analysis only. The small-signal model in Figure 7 still has the capacitors

drawn in place, but the following analysis assumes those are removed from

the circuit.

Rs

1 2
C1

rπ1

gm1vπ1

3

RC1

4
rπ2

RE2 CE2

5(Vout)
gm2vπ2

RC2

RF

Vs

Rs

+ −vπ2+ vπ1

Figure 7: A small-signal model of the direct-coupled pair amplifier with

current-shunt feedback

Let’s apply the general feedback analysis to this circuit and find equations

for t12, t21, t22, T and β. Since the feedback signal is current, it is convenient

that the controlled sources are transformed into ’current mode’ using the

expansion

gmvπ = gmrπ
vπ

rπ
= βF iπ. (8)

When following this feedback analysis it is necessary that one controlled

source be chosen as an independent source. This independent source is iden-

tified later on by using the notation

βF Îπ. (9)

2.3 t21 feedback parameter

The return ratio T and t12 are obtained from the same circuit model where

Xs = Is is set to zero. To evaluate t21, a circuit with the output source

Xo = Io = 0 needs to be drawn. This circuit is shown in Figure 8 and

simplified further in Figure 9.

The matrix equation describing the circuit in Figure 9 is given by equation

(10).
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Rs

1

rπ1

βF1Îπ1

2

RC1

3
rπ2

RE2

4(Vout)
βF2iπ2

RC2

RF

Is

iπ2 = 0 iπ2 = 0
iπ1 Iout

Figure 8: Circuit model for evaluating the t21 feedback parameter

Rs

1

rπ1

RF

RE2

βF1Îπ1

2

RC1

rπ2

Is

iπ1

Figure 9: Simplified circuit model for evaluating the t21 feedback parameter
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×
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
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V2
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



=








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−βF1Îπ1









(10)

This matrix equation can be written directly by inspecting the circuit model

and using the rules of the nodal analysis. The nodal analysis is used, be-

cause the second controlled current source cannot be transformed as a volt-

age source due to a missing parallel resistance. According to the rules of the

nodal analysis, the admittance terms are collected to the main matrix and the

current source terms are placed into the current vector. The voltage nodes in

the voltage vector are the variables to be solved from this equation.

For evaluation purposes it is convenient that all controlled source terms from

the current vector are moved to the admittance matrix. Because the matrix

equation is just a set of linear equations, the controlled source terms are

subtracted or added to both sides of the equation. It is also necessary to

identify to which voltage node variables the controlled source term relates

to. Based on this discussion, the matrix equation (11) is readily modified in
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the desired form.
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
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
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×
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
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
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=




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0






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(11)

The feedback parameter t21 was defined as the fraction
Xi

Xs

, where the source

terms in this current amplifier case are defined as currents. Therefore, the

resulting equation for t21 is

t21 =
iπ1

Is
=

V1

rπ1Is
=

Rs(RE2 +RF )

(rπ1 +Rs)(RE2 +RF ) +Rsrπ1
. (12)

As a single parameter this does not yet describe much of the circuit prop-

erties, it is just a multiplier between the input source and the input of the

amplifier.

2.4 Return ratio T and t12 feedback parameter

The circuit model needs to be redrawn for analysing the return ratio T and

the feedback parameter t12. Figure 10 shows the correct model, where the

input source is removed due to the rule Xs = Is = 0. When the value of

a current source is set to 0, it describes on open-circuit condition and the

branch containing the current source is simply removed from the circuit as

seen from Figure 10.

Rs

1

rπ1

βF1Îπ1

2

RC1

3
rπ2

RE2

4(Vout)
βF2iπ2

RC2

RF

+ −vπ2+
vπ1

Is = 0

iπ1 Iout

iπ2

Figure 10: Circuit model for evaluating feedback parameters T and t12
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The matrix equation describing the circuit model of Figure 10 is written as
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This equation needs to be modified so that it is easy to solve the fractions

−
iπ1

Îπ1
and

Iout

Îπ1
as required by the definitions of the feedback parameters.

Therefore the independent controlled source term Îπ1 is left to the current

vector, while all other current source terms are moved to the admittance

matrix. The resulting matrix equation is of the form shown below and the

unknown voltages can be relatively easily solved from this matrix equation

using the Cramer’s rule.
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After solving the fraction −
iπ1

Îπ1
one has the equation for the return ratio

T = −
iπ1

Îπ1
=

RP

rπ1

βF1RC1(βF2 + 1)RE2

(RE2 +RF +RP )(RC1 + rπ2) + (βF2 + 1)RE2(RF +RP )
,

where a parallel resistance term RP = Rs||rπ1 has been taken into use to

simplify the equations. In a similar fashion the feedback parameter t12 is

solved using the same model, and the result is

t12 =
V4

RC2Îπ1
= −

βF1RC1βF2(RE2 +RF +RP )

(RE2 +RF +RP )(RC1 + rπ2) + (βF2 + 1)RE2(RF +RP )
.
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2.5 t22, feedback factor β and gain factor K

If the approximation is made that βF2 + 1 ≈ βF2, then the multiplier t22 will

simplify considerably to the form

t22 = −
T

t12
=

RSRE2

(rπ1 +RS)(RF +RE2) +RSrπ1
,

and then the equation for the feedback factor becomes

β =
t22

t21
=

RE2

RE2 +RF

. (13)

The gain factor K is the negative inverse of the feedback factor:

K = −
1

β
= −

t21

t22
= −

RE2 +RF

RE2

, (14)

And since all the feedback parameters have been evaluated as currents, the

gain factor represents current gain. If the return ratio T is large, then K

is quite accurate approximation of the total gain of the circuit. For better

accuracy The total gain of the circuit can be evaluated using the general

formula (4) as

Ai =
t11 +KT

1 + T
, (15)

which needs the t11 parameter to get the exact value, but its effect to the

final result is small so it can be left out.

2.6 Input and output impedance

For evaluating the input impedance one must draw a circuit model for the so

called ’dead-system’. The dead-system impedance was needed for using the

Blackman’s impedance formula (7). Figure 11 shows the dead-system model

with the independent controlled source suppressed. Figure 11 includes also

an ideal test current source IT , and related internal impedance Rs. However,

since this is a test source, it should be ideal. If the test source would be an

ideal voltage source, then Rs = 0, but now in the current source Rs = ∞

and can be considered disconnected from the circuit. With the test source

included, the input impedance is determined by sourcing current and mea-

suring the resulting voltage at voltage node V1.

The impedance is evaluated by solving V1 from the matrix equation below

and dividing by the test current IT . Notice that the matrix does not include
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Rs

1

rπ1

2

RC1

3
rπ2

RE2

4(Vout)
βF2iπ2

RC2

RF

IT

+ −vπ2+
vπ1

iπ1 Iout

iπ2

Figure 11: Circuit model for evaluating the dead-system input impedance

the admittance of Rs, since its value is zero in the analysis.
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As a side note, for getting a decent expression for the dead-system input

impedance it is not necessary to solve the matrix equation, because a direct

inspection of Figure 11 shows the input impedance to be approximately the

parallel connection of the branches rπ1 and RF + RE2. However, for com-

parison, the dead-system input impedance solved from the matrix equation

is

ZID =
rπ1RF [RE2(βF2 + 1) + rπ2 +RC1] + rπ1RE2(rπ2 +RC1)

(rπ1 +RF )[RE2(βF2 + 1) + rπ2 +RC1] +RE2(rπ2 +RC1)

The Blackman’s formula requires also the return ratio to be evaluated in

short-circuit and open-circuit conditions. Basically this is simple, since the

methodology states that Rs and RL are not part of the amplifier feedback

cycle when considering the input and output connections. Therefore, one

can get the short-circuit and open-circuit conditions by inspection from the

already evaluated expression for T . Setting Rs = 0 In the return ratio of the

current-shunt feedback system creates the short-circuit condition. For this

condition T (Rs → 0) = 0, so the only meaningful value for the return ratio
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must come from setting Rs = ∞. Hence,

T (Rs → ∞) =
βF1RC1(βF2 + 1)RE2

(RE2 +RF + rπ1)(RC1 + rπ2) + (βF2 + 1)RE2(RF + rπ1)
,

and the use of the Blackman’s impedance formula for the input impedance

with feedback gives

ZIF =
ZID

1 + T (Rs → ∞)
≈

rπ1||(RF +RE2)

1 + T (Rs → ∞)
,

where the approximated expression for the dead-system input impedance

has been used. So the current-shunt feedback reduces the input impedance

by the amount determined by the open-circuited return ratio.

The output impedance evaluation needs a bit of thought. The terminating

impedance is seen as
RC2

RC2

in the loop gain equation and basically cancels

itself out. Although setting RC2 → 0 would be OK (results into 1), one

cannot set RC2 → ∞ in the loop gain equation (infinity divided by infinity is

undefined).

So to evaluate T in the open circuit state, a new small-signal model should

be drawn. Here we will benefit from knowing that the feedback loop in the

output is in series with the load resistance RC2. If RC2 is taken out from the

circuit the output current becomes 0 and no current is flowing in the feedback

loop. Therefore the small-signal model is drawn much like in Figure 8 and

the loop gain T (RC2 → ∞) is 0, because the loop is broken.

So eventually it is evident that the output impedance is evaluated from the

equation

ZOF = ZOD(1 + T (RC2 → 0)), (16)

where T (RC2 → 0) = T and ZOD = ∞, since the intrinsic transistor resis-

tance r0 in this simplified model was approximated to infinity and neglected

from the analysis. The output resistance for the whole circuit is therefore

RC2.

2.7 Circuit with RE1 included

Some adaptations of this circuit add one extra resistor to the emitter of Q1.

A good example of using this approach is the Crybaby-style wah-pedal. The

obtained results for the circuit without RE1 can be extended to cover the

circuit with RE1 included using a neat little trick. Beware that this trick

does not apply for every circuit, but quite often it works nicely. When one



3 VOLTAGE-SERIES FEEDBACK 15

has evaluated T , K and t11 for the circuit without RE1, the circuit with RE1

included can be modelled by making the following changes:

1. If the expression for T has the combination gmrπ1 in the numerator,

assign that as βF1.

2. Then assign rπ1 = rπ1 + (βF1 + 1)RE1 for all the remaining rπ1 in the

equations of t11, T and K, after this one gets the accurate voltage gain

results from equation (15).

Note that this same approach should work for the impedance evaluation

as well, but I have not verified that numerically. Just make sure that the

combinations of gmrπ1 in the numerators of T are identified and marked as

βF1 before making the adjustment to rπ1 in all equations.

3 Voltage-series feedback

As its name suggests, the voltage-series feedback is typically applied in volt-

age amplifiers. In this feedback type the output voltage is sampled and fed

back to the input in series with the signal source. This feedback configuration

is also known as the ’shunt-series’ type because the output voltage is probed

by a shunt connection (probing of voltage with a series connection is not

possible). In the feedback analysis the amplifier element and the feedback

network are modelled as a general ’two-port’ systems (see Figure 12), from

where the series and shunt connections are easily distinguished.

An example amplifier structure using the voltage-series configuration is shown

in Figure 13. The feedback loop is implemented by connecting the collector

of the second amplifier stage to the emitter of the first amplifier stage via

resistor RF .

To see the effects of the feedback loop, the amplifier should be analysed from

the viewpoint of DC and AC operation.

3.1 DC analysis

The DC model is redrawn for analysis purposes in Figure 14. The analysis

assumes that both of the transistors are biased in the forward-active region.

The biasing is however sensitive to the current levels and either of the tran-

sistors is easily saturated in this connection. In this case, the feedback loop
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Rs

Vs rπ gmvπ ro RC2||RL

amplifier circuit

feedback circuit

RE1

RF

+

−

vπ

+

−

vout

Vf− +

Figure 12: A voltage amplifier with series feedback

C1

Q1

VE1

RE11 kΩ

RC1 10 kΩ

VC1 Q2

RC2 5 kΩ

VCC

12 V

VE2

RF 10 kΩ

RE2 2 kΩ

VC2

20 µFCE2

Vout

Vs

Rs

RB1 1.1 MΩ

Figure 13: A direct-coupled pair amplifier with voltage-series feedback

affects very little to the DC biasing, because the feedback only affects the po-

tential VE1 and does not interfere with any significant transistor bias current.

The circuit in Figure 6 has three distinct voltage nodes, labelled as VC1, VE1

and VC2. Based on Kirchhoff’s current law, the current equations for the
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Q1

IC1

IE1

IB1

I ′C1

RC1 10 kΩ

VC1

I ′C2

IC2

IE2

IB2

Q2

RC2 5 kΩ

VC2

VE1

I ′E1

IF

VCC = 12 V

RE2 2 kΩRE1 1 kΩ

1.1 MΩ RB1

RF 10 kΩ

−

+
VBE1

−

+
VBE2

Figure 14: A DC model of the amplifier with voltage-series feedback

nodes are:

I ′E1 = IE1 + IF = (βF1 + 1)IB1 + IF

I ′C1 = IC1 + IB2 = βF1IB1 + IB2

I ′C2 = IC2 + IF = βF2IB2 + IF

The essential currents can be expressed with the node voltages as:

I ′E1 =
VE1

RE1

; I ′C1 =
VCC − VC1

RC1

; IB1 =
VCC − VBE1 − VE1

RB1

IF =
VC2 − VE1

RF

; I ′C2 =
VCC − VC2

RC2

; IB2 =
VC1 − VBE2

RE2(βF2 + 1)
.

Substitutions of the voltage equations into the current equations leads to the

following three equations

VE1

RE1

= (βF1 + 1)
VCC − VBE1 − VE1

RB1

+
VC2 − VE1

RF

VCC − VC1

RC1

= βF1
VCC − VBE1 − VE1

RB1

+
VC1 − VBE2

RE2(βF2 + 1)

VCC − VC2

RC2

=
βF2

βF2 + 1

VC1 − VBE2

RE2(βF2 + 1)
+

VC2 − VE1

RF

.
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These equations can be organised into a matrix equation, from where each of

the node voltages can be solved using the Cramer’s rule. The matrix equation

is:























1

RE1

+
βF1 + 1

RB1

+
1

RF

0 −
1

RF

−
βF1

RB1

1

RC1

+
1

RE2(βF2 + 1)
0

−
1

RF

βF2

βF2 + 1

1

RE2

1

RC2

+
1

RF























×



















VE1

VC1

VC2



















=























(βF1 + 1)
VCC − VBE1

RB1

VCC

RC1

+ βF1

VBE1 − VCC

RB1

+
VBE2

RE2(βF2 + 1)

VCC

RC1

+
βF2

βF2 + 1

VBE2

RE2























.

Based on this analysis, all the other biasing voltages and currents can be

solved using the magnitudes of the node voltages.

3.2 AC analysis

Then one proceeds towards the AC analysis. Figure 15 shows the complete

small-signal model of the system, but to ease out the calculations, the simpli-

fied model of Figure 16 is adequate. The simplifications concern the removal

of DC-blocking capacitors and the high-valued biasing resistor RB1.

Rs

1 2
C1

RB1

3 4
rπ1

RE1

gm1vπ1

RC1

5
rπ2

RE2 CE2

6(Vout)
gm2vπ2

RC2

RF

Vs

Rs

+ −vπ2+ −vπ1

Figure 15: A small-signal model of the direct-coupled pair amplifier with

voltage-series feedback

The analysis approach for the voltage-series case is the same as for the

current-shunt feedback configuration, but now we are aiming to perfection

and calculate also the feedback parameter t11, which is often neglected, be-

cause of its small significance in the expression for the total gain of the feed-

back system.
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Rs

1 2
rπ1

RE1

gm1V̂π1

RC1

3

rπ2 gm2vπ2

4(Vout)

RC2

RF

Vs

Rs

+

−

vπ2

+ −vπ1

Figure 16: A simplified model for the mid-band frequencies

3.3 t11 feedback parameter

So first we evaluate the dead-system gain t11 from the circuit of Figure 17,

where the second controlled source Q2 has been suppressed as the theory

requires.

Rs

1 2
rπ1

RE1

gm1V̂π1

RC1

3

rπ2

4(Vout)

RC2

RF

Vs

Rs

+

−

vπ2

+ −vπ1

Figure 17: Small-signal model for evaluating the feedback parameter t11

However, when calculating the other feedback parameters, we are using Q1

as the selected controlled source. This is confusing, but this has to be done to

get exact results for this circuit. The reason is the local feedback loop around

Q1, which has to be retained for the dead-system gain evaluation. The ob-

tained results have been verified against direct evaluation of the complete

transfer function and it validates that the local feedback loop is part of the

dead-system circuit.
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Anyway, the matrix equation to evaluate t11 from Figure 17 is




































1

Rs

+
1

rπ1
−

1

rπ1
0 0

−
1

rπ1

1

rπ1
+

1

RE1

+
1

RF

0 −
1

RF

0 0
1

RC1

+
1

rπ2
0

0 −
1

RF

0
1

RC2

+
1

RF


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
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
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Vs
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gm1V̂π1

−gm1V̂π1

0





























.

For hand calculations, the dependent controlled source terms are moved

from the current vector to the admittance matrix. The following matrix

equation shows the resulting matrix elements after the controlled source

terms have been moved to the admittance matrix. After moving the terms,

the node variables are ready to be solved from matrix equation using the

Cramer’s rule.




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
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




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


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+
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0 0
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+

1

RE1

+
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RF

0 −
1

RF

βF1

rπ1
−
βF1
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1

RC1

+
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rπ2
0

0 −
1

RF

0
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+
1
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
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
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






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


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


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
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V2

V3

V4


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












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












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











Vs
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0

0

0





























.

Then from here

t11 =
V4

Vs

=
RC2RE1(βF1 + 1)

(RC2 +RF )[RE1(βF1 + 1) + rπ1 +Rs] +RE1(rπ1 +Rs)
. (17)

As a single parameter this does not give that much information, but this

is needed when composing the complete gain expression from individual

feedback parameters.

3.4 t21 feedback parameter

Next we evaluate the feedback parameter t21 from its own small-signal model,

where the output voltage source is set to zero (Xo = Vo = 0). This small-

signal model is drawn in Figure 18, where the feedback from the output
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voltage has been eliminated by setting the output voltage to zero. The elim-

ination of the output voltage enables to analyse the situation where only the

input source Vs is active and hence utilising the principle of superposition.

Rs

1 2
rπ1

RE1 RF

gm1V̂π1

RC1

3

rπ2
Vs

Rs

+

−

vπ2

+ −vπ1

Vout = 0

Figure 18: Small-signal model for evaluating the feedback parameter t21

The dependent controlled source is chosen to be the first current-controlled

current source and is identified in the figure and in the equations by the

capitalised notation, gm1V̂π1. The small-signal model of Figure 18 is mapped

to the following matrix representation, where the admittance terms are col-

lected to the main matrix and the current source terms are placed into the

current vector. The voltage nodes in the voltage vector are the variables to

be solved from this equation.





















1
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+
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0

−
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1
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+
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0 0
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+
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


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






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










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
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
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
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
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










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

















(18)

For evaluation purposes it is convenient that all controlled source terms from

the current vector are moved to the admittance matrix. Because the matrix

equation is just a set of linear equations, the controlled source terms are

subtracted or added to both sides of the equation. It is also necessary to

identify to which voltage node variables the controlled source term relates

to. Based on this discussion, the matrix equation (19) is readily modified in

the desired form.
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
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

















(19)

Since vπ1 is not directly any node variable, it has to be calculated as the

difference V1 − V2. The feedback parameter t21 is then found to be

t21 =
vπ1

Vs

=
V1 − V2

Vs

=
rπ1(RE1 +RF )

(rπ1 +Rs)(RF +RE1) + (βF1 + 1)RE1RF

. (20)

3.5 Return ratio T and t12 feedback parameter

As already noted, as a single parameter the t21 does not tell much about the

properties of the circuit. Because the aim is to find the expressions for β and

T , the battle with the equations continues. For evaluating T and t12 the input

source needs to be suppressed (Xs = Vs) and let the output source be active

in turn. The small-signal model of Figure 19 provides a suitable model for

the job.

Rs

1 2
rπ1

RE1

gm1V̂π1

RC1

3

rπ2 gm2vπ2

4(Vout)

RC2

RF

+

−

vπ2

+ −vπ1

Vs

Rs

= 0

Figure 19: Small-signal model for feedback parameters T and t12

From this model, the following matrix equation is written:
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.

To ease out the evaluation process, all but one of the dependent controlled

source terms are moved from the current vector to the admittance matrix.

After moving the terms, the node variables are ready to be solved from matrix

equation using the Cramer’s rule.
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.

To find the return ratio T , the fraction −
vπ1

V̂π1

= −
V1 − V2

V̂π1

needs to be solved.

The result of the lengthy calculation is

T =
βF1RC1βF2RC2

RC1 + rπ2

RE1

(RC2 +RE1 +RF )(Rs + rπ1) + (βF1 + 1)RE1(RC2 +RF )
.

The same circuit model can be reused to evaluate the feedback parameter

t12, which is defined as
V4

V̂π1

. The equation for t12 is

t12 =
βF1RC1βF2RC2

RC1 + rπ2

1

rπ1
[(rπ1 +Rs)(RF +RE1) + (βF1 + 1)RE1RF ]

(RC2 +RE1 +RF )(Rs + rπ1) + (βF1 + 1)RE1(RC2 +RF )
.
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3.6 t22, feedback factor β and gain factor K

The t22 parameter is obtained by dividing T by t12. Hence,

t22 = −
T

t12
= −

rπ1RE1

(rπ1 +Rs)(RF +RE1) + (βF1 + 1)RE1RF

.

Then finally the feedback factor β is obtained by dividing t22 by t21 and the

result of this calculation is

β =
t22

t21
= −

RE1

RE1 +RF

.

From here it follows that the approximate gain factor

K = −
1

β
=

RE1 +RF

RE1

.

So here we got the expected result, which could have been guessed by di-

rectly looking at the circuit diagram. Here one did not even need to make any

simplifications during the evaluation process, therefore the resistive feedback

network does not interact with any of the surrounding passive components.

One interesting fact is that the feedback factor is negative in this case. This

actually a good thing because the output voltage in this circuit is connected

as positive feedback to the emitter of the first transistor. From there the sig-

nal is inverted to the input side and from there comes the minus sign. In the

current-shunt example the output signal was already inverted with respect

to the input, that is why the feedback factor there was positive.

Now that all the feedback parameters have been calculated, the complete

gain expression for the voltage gain Av can be constructed as:

Av =
t11 +KT

1 + T
,

and with the calculated parameters this gives the exact gain of the complete

circuit.

3.7 Input and output impedance

Finally the input impedance of the voltage-series feedback circuit is analysed

just for the sake of completeness. Following the standard procedure, the

dead-system impedance is evaluated from the model where the dependent

controlled source is suppressed. This model is drawn into Figure 20. The

dead-system model is identical to the model from where the t11 parameter

was evaluated. Due to the local feedback loop around Q1, transistor Q2 is

taken off to break the amplification loop.



3 VOLTAGE-SERIES FEEDBACK 25

Rs

1 2
rπ1

RE1

gm1V̂π1

RC1

3

rπ2

4(Vout)

RC2

RF

IT

+

−

vπ2

+ −vπ1

Figure 20: Small-signal model for evaluating the input impedance

Again the test current source is ideal, so the imagined source resistor Rs can

be considered as infinite resistance and it can be taken out of the circuit.

With this in mind, the matrix equation to evaluate the input impedance is

very similar to the matrix for t11. Here we directly write down the form,

where the controlled current terms are already moved into the admittance

matrix:





































1

rπ1
−

1

rπ1
0 0

−
βF1 + 1

rπ1

βF1 + 1

rπ1
+

1

RE1

+
1

RF

0 −
1

RF

βF1

rπ1
−
βF1

rπ1

1

RC1

+
1

rπ2
0

0 −
1

RF

0
1

RC2

+
1

RF





































×





























V1

V2

V3

V4





























=





























IT

0

0

0





























.

After solving this equation using Cramer’s rule, the dead-system impedance

reads

ZID =
V1

IT
= rπ1 +

(RC2 +RF )RE1(βF1 + 1)

RC2 +RF +RE1

Now that we know the dead-system input impedance, next one needs to

analyse the situations for Rs → ∞ and Rs → 0 in the expression of the

return ratio. Setting Rs = ∞ results to T = 0 and Rs = 0 results to a

reasonable value. Hence, the input impedance with feedback is defined as
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ZIF = ZID(1 + T (Rs → 0)), where

T (Rs → 0) =
βF1RC1βF2RC2

RC1 + rπ2

RE1

(RC2 +RE1 +RF )rπ1 + (βF1 + 1)RE1(RC2 +RF )
.

A direct conclusion is that voltage-series type of feedback increases the input

impedance by the factor of (1 + T ).

The output impedance is evaluated in similar fashion. The small-circuit

model for output impedance looks as drawn in Figure 21. The resistor RC2

is considered to be outside the point where the amplifiers output impedance

is evaluated (looking into the amplifier). So we can utilise RC2 as the source

resistor for our ideal test current source IT .

Rs

1 2
rπ1

RE1

gm1V̂π1

RC1

3

rπ2 IT

4(Vout)

RC2

RF

+

−

vπ2

+ −vπ1

Figure 21: Small-signal model for evaluating the output impedance

Since the requirement is to have an ideal test source, we set RC2 = ∞ and

just like Rs in the input impedance evaluation, RC2 can be taken out from the

circuit under analysis. The matrix equation to evaluate the output impedance

is





































1

Rs

+
1

rπ1
−

1

rπ1
0 0

−
βF1 + 1

rπ1

βF1 + 1

rπ1
+

1

RE1

+
1

RF

0 −
1

RF

βF1

rπ1
−
βF1

rπ1

1

RC1

+
1

rπ2
0

0 −
1

RF

0
1

RF





































×





























V1

V2

V3

V4





























=





























0

0

0

IT





























.
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After a boring process of manual calculations, the dead-system output impedance

can be written as

ZOD = RF +

RE1
rπ1 +Rs

βF1 + 1

RE1 +
rπ1 +Rs

βF1 + 1

.

Setting RC2 = 0 results to T = 0 and RC2 = ∞ gives the loop gain T a

reasonable value. Hence, the output impedance with feedback is defined as

ZOF =
ZOD

1 + T (RC2 → ∞)
, (21)

and the output impedance looking after RC2 is the parallel impedance

Z ′

OF =
RC2ZOF

RC2 + ZOF

. (22)

The reason for covering this amplifier configuration in such a complete fash-

ion is that the derived equations can be used for calculating the gain of the

circuit very accurately and the equations can be used to understand what is

going on in different parts of the circuit. Furthermore, for example the White

emitter follower is a direct application of this circuit and taking RE1 = ∞

(very large in numerical analysis) and RF = 0.0001 (very small in numerical

analysis) in the derived equations, they give accurate results for the White

emitter follower as well. In that application the usefulness of the accurate

input and output impedance equations are seen in practise.

From another point of view, Figure 22 indicates a situation where the Miller

theorem is used to break the feedback loop into two separate resistors. The

rescaled feedback resistor RF appears in parallel with the load resistor (look

at RC2 in the small-signal model in this case) and also in parallel with the

emitter resistor RE1. The positive feedback reflects RF as negative impedance

in parallel with RE1. This negative impedance increases the total emitter

resistance. The final step towards negative feedback to the input terminals

is arranged as a local feedback loop from the emitter of Q1.

4 Global feedback versus local feedback

The concepts global and local feedback basically relate to the amount of

components which the feedback loop encloses within. If the feedback loop is

taken from the output to the input over one single transistor, the feedback is

localised and therefore the feedback is commonly referred to as local feed-
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C1

Q1

VE1

RE11 kΩ

RF

1−
VC2

VE1

RC1 10 kΩ

VC1 Q2

RC2 5 kΩ

VCC

9 V

VE2

VC2 Vout

RF

1−
VE1

VC2

RE2 2 kΩ 20 µFCE2

Vs

Rs

RB1 1.1 MΩ

Figure 22: The feedback impedance split according to the Miller theorem

back. If the feedback loop extends over a complete circuit stage with several

amplifier elements, then the feedback is categorised as global feedback.

Both of the examples already given in this context are more or less examining

the feedback in the global scope. The most common type of local feedback is

found from a simple single-stage BJT amplifier with an emitter resistor (see

Figure 23). Typically the emitter resistor is bypassed for AC-signals with a

capacitor, but when the capacitor is not there, the effective input signal is

facing a feedback loop from the emitter to the input.

RE

RC

Vin

Vout

VCC

Figure 23: A BJT amplifier with an unbypassed emitter resistor
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Figure 24 indicates that the local feedback structure of an unbypassed CE-

stage is of the series-series type, where the current from the output is sam-

pled and converted into voltage in the feedback loop. The voltage due to the

output current over the emitter resistor is therefore seen as inverted voltage

at the input side of the transistor.

Rs

Vs rπ gmvπ ro RC1||RL

amplifier circuit

feedback circuit

RE1

+

−

vπ

ioutVf− +

Figure 24: A series-series feedback network of the BJT with an emitter resistor

This series-series CE stage amplifier is analysed more closely in section 7.

5 Bonus: shunt-shunt feedback circuit

This is a quick addition after noting the benefits of the collector-to-base feed-

back configuration of a single BJT amplifier. This configuration is drawn in

Figure 25. The resistor between the collector and the base serves both as a

DC bias resistor and an AC signal feedback path.

5.1 DC analysis

First let’s check the DC analysis of this circuit. Figure 26 shows the compo-

nents, voltage nodes and currents which participate to the biasing scheme.

It is easy to see that there is only one unknown voltage node VC , so it should

be relatively easy to derive the bias equations for this circuit. The current

equation for node VC can be written as

I ′C = IC + I ′ = βF (I
′ − I) + I ′ = (βF + 1)I ′ − βF I, (23)
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RC

Vout

RB1

RB2

VCC

CBRGRs

Vs

Figure 25: A BJT amplifier with collector-to-base bias and feedback

RC

VB

VC

RB1

RB2

VCC

I ′C = IC + I ′ = IC + IB + I

IC

IE

IB

I ′

I
−

+
VBE

Figure 26: DC model for biasing calculations

and the currents can be expressed using voltages and resistances as follows:

I ′C =
VCC − VC

RC

; I ′ =
VC − VBE

RB1

; I =
VBE

RB2

. (24)

From here one can deduce that the collector bias voltage

VC =

VCC

RC

+
(βF + 1)VBE

RB1

+
βFVBE

RB2

1

RC

+
(βF + 1)

RB1

. (25)

Other values can be calculated based on the need. This concludes the DC

bias analysis for this circuit.
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5.2 AC analysis with feedback parameters

The small-signal model corresponding to the circuit of Figure 25 is shown in

Figure 27. Let’s analyse the basic feedback parameters, the feedback factor

β and the return ratio T , for this small-signal model.

Rs

1 2
RG

RB2
rπ

gmV̂π

3

RC

RB1

Vs

Rs

+ vπ

Figure 27: A small-signal model of the collector-to-base feedback BJT amplifier

According to the standard procedure, first we calculate the feedback param-

eter t21, which requires that the output voltage node is set to zero (ground

potential) before evaluation. This leads to the following matrix equation:










1

Rs

+
1

RG

−
1

RG

−
1

RG

1

RG

+
1

RB1

+
1

RB2

+
1

rπ











×









V1

V2









=









Vs

Rs

0









.

Solving the matrix equation for the node voltage V2, this gives:

t21 =
V2

Vs

=
RB1RB2rπ

(rπ +RB2)(RB1RG +RB1Rs) + rπRB2(Rs +RB1 +RG)
.

Next we evaluate the return ratio T , which in turn requires the input source

to be set to zero. When the input current source is set to zero, it leaves

an open circuit and from that configuration the following matrix equation is

obtained:




















1

Rs

+
1

RG

−
1

RG

0

−
1

RG

1

RG

+
1

RB1

+
1

RB2

+
1

rπ
−

1

RB1

0 −
1

RB1

1

RB1

+
1

RC


















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×



















V1

V2

V3



















=



















0

0

−gmV̂π



















.
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After solving for V2, the equation for the return ratio T is found to be

T = −
V2

V̂π

=
gmrπRB2RC(Rs +RG)

(rπ +RB2)(RB1 +RC)(RG +Rs) + rπRB2(Rs +RG +RC +RB1)
.

One can use the same matrix equation to solve for node voltage V3 and get

the feedback parameter t12, which comes out as

t12 =
V3

V̂π

= −
gmRC [(rπ +RB2)(RB1RG +RB1Rs) + rπRB2(Rs +RB1 +RG)]

(rπ +RB2)(RB1 +RC)(RG +Rs) + rπRB2(Rs +RG +RC +RB1)
.

For completeness one can also evaluate the dead-system gain parameter t11.

It is evaluated as a normal transfer function
Vo

Vs

, but the controlled source is

suppressed (removed) from the circuit. In this case, the same matrix equa-

tion which was used for evaluating T and t12 can be used for calculating t11

as well. The result is

t11 =
rπRB2RC

(rπ +RB2)(RB1 +RC)(RG +Rs) + rπRB2(Rs +RG +RC +RB1)
.

The obtained t-parameters can now be used for evaluating the open-loop

gain, which is AOL = t11 + t12t21. However, in this context we don’t really

care about the open-loop gain. More importantly the reverse transmission

transfer function (or the feedback factor) β can now be evaluated using the t-

parameters, but we still need the parameter t22 for that. One gets the missing

parameter from

t22 = −
T

t12
=

rπRB2(Rs +RG)

(rπ +RB2)(RB1RG +RB1Rs) + rπRB2(Rs +RB1 +RG)
,

and then

β =
t22

t21
=

Rs +RG

RB1

⇒ K = −
RB1

Rs +RG

.

The gain factor K is the negative inverse of the feedback factor by definition,

meaning that

K = −
1

β
.

It is important to note that the since the feedback evaluation was completely

done using voltage signals
Vx

Vy

, this gain parameter is valid only for describing

voltage gain. According to the general theory of feedback, the total gain

obtained from the circuit with feedback is defined by the return ratio T and

the voltage gain factor K as

Av =
t11 +KT

1 + T
. (26)

If evaluated numerically, this result will give excatly the same values as if

one would have directly calculated the transfer function for this circuit.
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5.3 Input and output impedance

The input and output impedances are evaluated using the Blackman’s impedance

formula. Regarding the input impedance, the Blackman’s formula leads to

the conclusion that the input impedance with feedback is practically the same

as the dead-system input impedance, which is dominated by R1 (since Rs is

not considered to be part of the feedback impedance). The way to derive

the equation for input impedance is to evaluate the loop-gain T when setting

Rs = 0 and Rs = ∞ (short-circuit and open-circuit T for the Blackman’s for-

mula). In this case neither of these terms are zero. For setting Rs = ∞, one

gets

T (Rs → ∞) =
gmrπRB2RC

(rπ +RB2)(RB1 +RC) + rπRB2

,

and for Rs = 0 we get

T (Rs → 0) =
gmrπRB2RCRG

RG(rπ +RB2)(RB1 +RC) + rπRB2(RG +RC +RB1)
.

The dead-system (controlled current source suppressed) input impedance is

found to be

ZDI = RG +
rπRB2(RB1 +RC)

rπRB2 + (rπ +RB2)(RB1 +RC)

and then according to Blackman’s formula, the input impedance with feed-

back is

ZIF = ZDI

1 + T (Rs → 0)

1 + T (Rs → ∞)
.

The output impedance is obtained in a similar fashion. Setting RC = 0 in

the expression of T (short circuit) gives nothing reasonable. Hence, the only

meaningful value must come from setting RC = ∞, and indeed

T (RC → ∞) =
gmrπRB2(Rs +RG)

(rπ +RB2)(Rs +RG) + rπRB2

.

The dead-system output impedance is found to be

ZDO = RB1 +
rπRB2(Rs +RG)

rπRB2 + (rπ +RB2)(Rs +RG)

and using the Blackman’s impedance formula, the output impedance with

feedback is obtained from

ZOF =
ZDO

1 + T (RC → ∞)
.

Actually, this is only the output impedance when looking into the transistor

before the collector resistor RC . This means that the collector resistor is
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considered as a load for this circuit. The output impedance when looking

after RC is therefore

Z ′

OF =
RCZOF

RC + ZOF

,

that is, the parallel impedance of RC and ZOF .

When using the shunt-shunt feedback topology, the amplifier becomes a tran-

sresistance amplifier, which expects current to the input side and amplifies

this current into a voltage output signal.

5.4 Circuit with RE included

The obtained results for the circuit without RE can be extended to cover the

circuit with RE using a neat little trick. Beware that this trick does not apply

for every circuit, but quite often it works nicely. When one has evaluated

T , K and t11 for the circuit without RE, the circuit with RE included can be

modelled by making the following changes:

1. If the expression for T has the combination gmrπ in the numerator,

assign that as βF .

2. Then assign rπ = rπ + (βF + 1)RE for all the remaining occurrences of

rπ in equations of t11, T and K. After this one gets the accurate voltage

gain results from equation (26).

Note that this same approach works for the impedance evaluation as well.

Just make sure that the combinations of gmrπ in the numerators of T are

identified and marked as βF before making the adjustment to rπ in all equa-

tions.

6 Extra Bonus: emitter follower feedback circuit

This is another quick addition to cover the feedback analysis of the common-

collector configuration with base resistors included. This circuit is a good

example of a shunt-series feedback type, which was covered already earlier.

The emitter follower circuit for analysis is shown in Figure 28.

We will skip the DC analysis for this circuit and only note that the DC analysis

is exactly the same as for the four-resistor common-emitter amplifier. For
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RE

Vout

RB1

RB2

VCC

CBRs

Vs

Figure 28: A common-collector BJT amplifier

reference we just recall that the base bias current is calculated from

IB =
VCC

RB2

RB1 +RB2

− VBE

RB1RB2

RB1 +RB2

+ (βF + 1)RE

,

and all other voltages and currents can be processed from there.

6.1 AC analysis with feedback parameters

The small-signal model corresponding to the circuit of Figure 28 is shown in

Figure 29. The voltage node V2 is the output node Vout of Figure 28. The

base resistors have been combined to a single resistor RB, which equals the

parallel resistance of RB1 and RB2, that is,

RB =
RB1RB2

RB1 +RB2

.

Let’s analyse the basic feedback parameters, the feedback factor β and the

return ratio T using this small-signal model.

According to the standard procedure, first we calculate the feedback param-

eter t21, which requires that the output voltage node V2 is set to zero (ground

potential) before evaluation. This leads to the following simple equation:

V1 =
Vs

Rs

(

1

Rs

+
1

RB

+
1

rπ

)

.

Solving the voltage relation between V1 and Vs yields

t21 =
V1

Vs

=
RBrπ

RB(Rs + rπ) +Rsrπ
.
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Rs

1

RB

2
rπ

RE

gmV̂π

Vs

Rs

+ −vπ

Figure 29: A small-signal model of the common-collector BJT amplifier

Next we evaluate the return ratio T , which in turn requires the input source

to be set to zero. When the input current source in the small-signal model is

set to zero, it leaves an open circuit and from that configuration the following

matrix equation is obtained:










1

Rs

+
1

RB

+
1

rπ
−

1

rπ

−
1

rπ

1

rπ
+

1

RE











×









V1

V2









=









0

gmV̂π









.

Since vπ is now V1 − V2, one needs to solve both nodes from the matrix

equation. Luckily the matrix has only two rows and two columns, so there

is not too much work to be done. After solving for V2, the equation for the

return ratio T is found to be

T = −
V1 − V2

V̂π

=
gmrπRE(Rs +RB)

RB(Rs + rπ +RE) +Rs(rπ +RE)
.

One can use the same matrix equation to solve for node voltage V2 and get

the feedback parameter t12, which comes out as

t12 =
V2

V̂π

=
gmRE[RB(Rs + rπ) +Rsrπ]

RB(Rs + rπ +RE) +Rs(rπ +RE)
.

For completeness one can also evaluate the dead-system gain parameter t11.

It is evaluated as a normal transfer function
Vo

Vs

, but the controlled source is

suppressed (removed) from the circuit. In this case, the same matrix equa-

tion which was used for evaluating T and t12 can be used for calculating t11

as well. The result is

t11 =
RBRE

RB(Rs + rπ +RE) +Rs(rπ +RE)
.

The obtained t-parameters can now be used for evaluating the open-loop

gain, which is AOL = t11 + t12t21. However, in this context we don’t really
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care about the open-loop gain. More importantly the reverse transmission

transfer function (or the feedback factor) β can now be evaluated using the t-

parameters, but we still need the parameter t22 for that. One gets the missing

parameter from

t22 = −
T

t12
= −

rπ(Rs +RB)

RB(Rs + rπ) +Rsrπ
,

and then

β =
t22

t21
= −

Rs +RB

RB

⇒ K =
RB

Rs +RB

.

It is important to note that the since the feedback evaluation was completely

done using voltage signals
Vx

Vy

, this gain parameter is valid only for describing

voltage gain. According to the general theory of feedback, the total gain

obtained from the circuit with feedback is defined by the return ratio T and

the voltage gain factor K as

AF = Av =
t11 +KT

1 + T
.

If evaluated numerically, this result will give exactly the same values as if

one would have directly calculated the transfer function for this circuit.

6.2 Input and output impedance

The input and output impedances are evaluated using the Blackman’s impedance

formula. The way to derive the equation for input impedance is to calculate

the dead-system input impedance and evaluate the return ratio T when set-

ting Rs = 0 and Rs = ∞ (short-circuit and open-circuit T for the Blackman’s

formula). When Rs = ∞, the return ratio becomes

T (Rs → ∞) =
gmrπRE

RB + rπ +RE

.

When settings Rs = 0 in the original equation for T , this gives

T (Rs → 0) =
gmrπRE

rπ +RE

.

The dead-system (controlled current source suppressed) input impedance is

found to be

ZDI =
RB(rπ +RE)

RB + rπ +RE

and then according to Blackman’s formula, the input impedance with feed-

back is

ZIF =
ZDI(1 + T (Rs → 0))

1 + T (Rs → ∞)
.
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The output impedance is obtained in a similar fashion. Setting RE = 0 in

the expression of T (short circuit) gives nothing reasonable. Hence, the only

meaningful value must come from setting RE = ∞, and indeed

T (RE → ∞) = gmrπ.

The dead-system output impedance is found to be

ZDO = rπ +
RsRB

Rs +RB

and using the Blackman’s impedance formula, the output impedance with

feedback is obtained from

ZOF =
ZDO

1 + T (RE → ∞)
.

Actually, this is only the output impedance when looking into the transistor

before the emitter resistor RE. This means that the emitter resistor is consid-

ered as a load for this circuit. The output impedance when looking after RE

is therefore

Z ′

OF =
REZOF

RE + ZOF

,

that is, the parallel impedance of RE and ZOF .

7 Super Bonus: common emitter feedback circuit

This section needs to be added to reveal the caveats in the systematic ap-

proach of using matrices and determinants for circuit analysis. In some cases

one ends up having an ambiguous determinant, where one row or column is

all zeros, but it can be worked around not to have all zeros by adding rows

or columns and get a valid answer. This is nasty, but can be worked out by

using our brains for even once.

The common-emitter BJT amplifier without a bypass capacitor beside the

emitter resistor implements a series-series feedback configuration, where the

emitter resistor works as the feedback actuator just like in the case of the

emitter follower. A series-series feedback makes the circuit behave like a

transconductance amplifier, where a voltage signal at the input is converted

as a current signal at the output. However, we will analyse the feedback

parameters using current sources both in input and output.

7.1 AC analysis with feedback parameters

Let’s skip the DC analysis and get straight to the point to evaluate the feed-

back parameters. The small-signal model of the common-emitter amplifier is
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RE

Vout

RB1

RB2

RC

VCC

CBRs

Vs

Figure 30: A common-emitter BJT amplifier

shown in Figure 31. The voltage node V3 is the output node Vout of Figure

30. The base resistors have been combined to a single resistor RB, which

equals the parallel resistance of RB1 and RB2, that is,

RB =
RB1RB2

RB1 +RB2

.

Let’s analyse the basic feedback parameters, the feedback factor β and the

return ratio T using this small-signal model.

Rs

1

RB

2 3
rπ

RE RC

gmV̂π

Vs

Rs

+ −vπ

Figure 31: A small-signal model of the common-collector BJT amplifier

According to the standard procedure, first we calculate the feedback param-

eter t21, which in this case requires that the output current is set to zero by

cutting out the controlled source before evaluation. The circuit for evalu-

ating t21 is shown in Figure 32. Note that even though the situation at the

output is similar to the current-shunt example, here it is enough to remove

the controlled source, because already this will prevent the amplified signal

to be fed back to the input side.
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Rs

1

RB

2
rπ

RE

Vs

Rs

+ −vπ

Figure 32: Circuit for evaluating the t21 feedback parameter

The evaluation of the feedback parameter t21 leads to the following equation

using the current divider relation:

iπ =
Vs

Rs

RsRB

Rs +RB

RsRB

Rs +RB

+ rπ +RE

.

This indicates the amount of current going through the transistor input re-

sistance rπ. Solving the current relation between iπ and Is, the feedback

factor

t21 =
iπ

Is
=

RsRB

(Rs +RB)(rπ +RE) +RsRB

.

Next we evaluate the return ratio T and the feedback parameter t12, which

in turn requires the input source to be set to zero. This circuit modification is

indicated in Figure 33, where the input current source is removed from the

circuit, and the rest of the small-signal model remains untouched.

Rs

1

RB

2 3
rπ

RE RC

gmV̂π

+ −vπ

Figure 33: Circuit for evaluating the T and t12 feedback parameters

When the input current source in the small-signal model is set to zero, it

leaves an open circuit and from that configuration the following matrix equa-
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tion is obtained:





















1

Rs

+
1

RB

+
1

rπ
−

1

rπ
0

−
1

rπ

1

rπ
+

1

RE

0

0 0
1

RC





















×



















V1

V2

V3



















=



















0

βF Îπ

−βF Îπ



















.

So yeah, now comes the sad part of the feedback story. One could try to

solve the matrix equation by moving either one of the current terms into the

admittance matrix and use Cramer’s rule as always. Most likely the wrong

answer would be obtained. To get both T and t12 correctly out from the same

matrix equation, we do this trick:





















1

Rs

+
1

RB

+
1

rπ
−

1

rπ
0

−
1

rπ

1

rπ
+

1

RE

1

RC

0 0
1

RC





















×



















V1

V2

V3



















=



















0

0

−βF Îπ



















.

We added row 3 into row 2 to get rid of the other current term and being also

farsighted we avoided an all zero column in Cramer’s determinants. This is

nasty, because it is far from being a systematic way of solving the loop gain.

To get the matrix into the correct form, one needs to use traditional circuit

analysis methods to verify the consistency of the results.

Anyways, since vπ is now V1−V2, for the loop gain T one needs to solve both

nodes 1 and 2 from the matrix equation. After some equation twisting, the

return ratio T is found to be

T = −
V1 − V2

Îπrπ
= −

iπ

Îπ
=

βFRE(Rs +RB)

(RB +Rs)(rπ +RE) +RsRB

.

The result is the same as in the case of the emitter follower circuit although

written here in a different way. One can use the same matrix equation to

solve for node voltage V3 and get the feedback parameter t12, which comes

out as

t12 =
V3

ÎπRC

=
Io

Îπ
= −βF .

Whoa, that is simple! One can verify the result easily by direct inspection on

the small-signal model.
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After solving T and t12, those can be used for evaluating the remaining t22

parameter. One gets the missing parameter from

t22 = −
T

t12
= −

RE(Rs +RB)

(RB +Rs)(rπ +RE) +RsRB

.

and then

β =
t22

t21
=

Is

Io
= −

RE

RsRB

Rs +RB

K = −
1

β
= −

Io

Is
=

Rs||RB

RE

. (27)

It is important to note that the since the feedback evaluation was completely

done using current signals
Ix

Iy
, this gain parameter is valid only for describing

current gain. But, since Vs = IsRs and Vo = −IoRC , we can turn the gain

parameter to describe voltage gain. So,

Kvoltage =
IoRC

IsRs

=
Vo

Vs

= −
RC

RE

RB

Rs +RB

≈ −
RC

RE

. (28)

The last approximation is valid when the source resistance Rs is much smaller

than the base resistance RB. If comparing to the results obtained from the

emitter follower, the gain term is simply scaled by the factor −
RC

RE

.

for the sake of completeness, the feedback parameter t11 is evaluated as
Io

Is
from the small-signal model with the controlled source removed. It seems

that in this case t11 = 0, because the output current is zero after removing

the controlled current source.

According to the general theory of feedback, the total gain obtained from

the circuit with feedback is defined by the return ratio T and the voltage

gain factor K as

AF = Ai =
t11 +KT

1 + T
.

If all the parameters have been calculated using the current source represen-

tation, then this gain equation will spit out the current gain of the circuit. In

this case it is fairly easy to convert the current relations into voltage relations

and then the gain will be obtained for voltage signals. The K is presented

in voltage form above and the loop gain T in voltage form is identical to the

emitter follower loop gain, namely:

T = −
V1 − V2

V̂π

=
gmrπRE(Rs +RB)

(Rs +RB)(rπ +RE) +RsRB

.
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Then,

AF = Av =
KT

1 + T
=

−βFRCRB

(Rs +RB)[rπ +RE(βF + 1)] +RsRB

.

7.2 Input and output impedance

Also the input impedance is evaluated in the same manner as for the emit-

ter follower. The output impedance needs the same reasoning as presented

in the section covering the shunt-series direct-coupled amplifier. Since the

transistor internal resistance ro is assumed to be infinitely large, the output

impedance is simply RC .

8 Ultra Bonus: common emitter feedback with ro

This section covers a practically useless BJT configuration, where an external

resistor RO is connected between the collector and emitter. It does not affect

the DC bias in any way, because of the added (unlabelled) capacitor. In the

AC model, RO connects parallel with the BJT internal output resistance ro.

Figure 34 gives more details of the circuit under analysis.

RE

Vout

RB1

RB2

RC

VCC

CBRs

Vs

RO

Figure 34: A common-emitter BJT amplifier with a resistor between collector

and emitter

The reason for studying this circuit is the desire to find out is there any

feedback through the added RO back to the input via the emitter resistor.

Basically this is still a series-series feedback configuration, but the uncer-

tainty comes from the fact that RO seems to be in a shunt connection in the
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output side while RE does the current sampling in a series configuration.

We will try to analyse the feedback parameters using current sources both in

input and output, the same way as was done with the basic common-emitter

amplifier.

8.1 AC analysis with feedback parameters

The small-signal model of the common-emitter amplifier with added RO is

shown in Figure 31.

Rs

1

RB

2 3
rπ

RE RC

gmV̂π

Vs

Rs

+ −vπ

RO

Figure 35: A small-signal model of the common-collector BJT amplifier with

RO

The voltage node V3 is the output node Vout of Figure 35. The base resis-

tors have been combined to a single resistor RB, which equals the parallel

resistance of RB1 and RB2, that is,

RB =
RB1RB2

RB1 +RB2

.

First we calculate the feedback parameter t21. The circuit for evaluating

t21 is shown in Figure 36. The output current has been zeroed by cutting

the connection to the controlled source and to RO, which would carry some

current even when the controlled source is removed. Another way of looking

at it is that this way both voltage and current in the output is zeroed. Hence

the small-signal model for t21 looks the same as in the case of the standard

common-emitter amp.

But why aren’t RO and RC included as a load after RE? The reason is that the

loading of the feedback section is taken into account only when it connects

back to the input side of the amplifier. In this case both RO and RC are in the
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Rs

1

RB

2
rπ

RE

Vs

Rs

+ −vπ

Figure 36: Circuit for evaluating the t21 feedback parameter

output side of the amplifier. This is the first hint that RO is not a feedback

resistor at all.

The evaluation of the feedback parameter t21 leads to the following equation

using the current divider relation:

iπ =
Vs

Rs

RsRB

Rs +RB

RsRB

Rs +RB

+ rπ +RE

.

This indicates the amount of current going through the transistor input re-

sistance rπ. Solving the current relation between iπ and Is, the feedback

factor

t21 =
iπ

Is
=

RsRB

(Rs +RB)(rπ +RE) +RsRB

.

Next we evaluate the return ratio T and the feedback parameter t12, which

in turn requires the input source to be set to zero. This circuit modification is

indicated in Figure 37, where the input current source is removed from the

circuit, and the rest of the small-signal model remains untouched.

Rs

1

RB

2 3
rπ

RE RC

gmV̂π

+ −vπ

RO

Figure 37: Circuit for evaluating the T and t12 feedback parameters
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When the input current source in the small-signal model is set to zero, it

leaves an open circuit and from that configuration the following matrix equa-

tion is obtained:




















1

Rs

+
1

RB

+
1

rπ
−

1

rπ
0

−
1

rπ

1

rπ
+

1

RE

+
1

RO

−
1

RO

0 −
1

RO

1

RC

+
1

RO





















×



















V1

V2

V3



















=



















0

βF Îπ

−βF Îπ



















.

Using the same solving technique as in the case of the basic common-emitter

amplifier, the return ratio is

T = −
iπ

Îπ
=

βFRORE(Rs +RB)

(RC +RO)[(Rs +RB)(rπ +RE) +RsRB] +RE[(Rs +RB)rπ +RsRB]
.

The parameter t12 comes out as

t12 =
Io

Îπ
=

βFRO[(Rs +RB)(rπ +RE) +RsRB]

(RC +RO)[(Rs +RB)(rπ +RE) +RsRB] +RE[(Rs +RB)rπ +RsRB]
.

Then,

t22 = −
T

t12
= −

RE(Rs +RB)

(Rs +RB)(rπ +RE) +RsRB

,

which surprisingly is the same expression as for the basic common-emitter

amplifier. The feedback factor and the gain factor are then also the same:

β =
t22

t21
=

Is

Io
= −

RE

RsRB

Rs +RB

K = −
1

β
= −

Io

Is
=

Rs||RB

RE

. (29)

This proves that the added RO resistance does not add up to the feedback

path as such. What is actually different are the return ratio T and the feed-

forward term t11, which has the value

t11 =
RsRBRE

(RC +RO)[(Rs +RB)(rπ +RE) +RsRB] +RE[(Rs +RB)rπ +RsRB]
.

This equation is given in current mode and can be transformed easily to

voltage mode as was done on the gain factor in the previous section covering

the basic common-emitter amplifier. When the value of RO is decreased,

it affects both T and t11, which lower the gain from the value of the ideal

circuit, where ro was assumed to be infinitely large.
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The gain values obtained from these feedback parameters are in 100% agree-

ment with values which are evaluated directly form the complete circuit.

This means that the feedback analysis is still perfectly valid for these kind of

circuits as well.

8.2 Input and output impedance

For the sake of completeness, the essential equations related to input and

output impedances are listed here. The return ratio equations when the

terminating impedances are short/open circuited are:

T (Rs → 0) =
gmrπRORERB

(RO +RC)[RB(rπ +RE)] +RERBrπ
.

T (Rs → ∞) =
gmrπRORE

(RO +RC)[RB + rπ +RE] +RE(RB + rπ)
.

T (RC → 0) =
gmrπRORE(Rs +RB)

RO[(Rs +RB)(rπ +RE) +RsRB] +RE(RBrπ +Rsrπ +RsRB

.

The dead-system input impedance is

ZDI =
RB(rπ +REx)

RB + rπ +REx

,

where

REx =
RE(RO +RC)

RE +RO +RC

and the dead system output impedance is

ZDI = RO +
RPRE

RP +RE

,

where

RP = rπ +
RsRB

Rs +RB

.

These listed equations can be used for evaluating the total impedance using

the Blackman’s impedance formula. Against simulation results the gain and

input impedance are exactly as obtained from these equations, but the output

impedance has some difference in it when the value of RO is taken very low.

This does not mean that these equations derived from the small-signal model

would not be correct, there just are other smaller details coming into play in

the SPICE models when RO is small.
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9 Hyper Bonus: buffered feedback circuit

Yet another example of a circuit which can be fully analysed using the general

feedback method. The circuit is basically the same as the collector-to-base

feedback, but this version introduces a unity-gain buffer in front of the actual

gain stage. The circuit is (badly) drawn in Figure 38. Note that the biasing

resistors for the buffer transistor have not been included here in the analysis.

RE1Rs

Vs

VCC

RC2

RF

Figure 38: Buffered feedback circuit

The small-signal model of this circuit is shown in Figure 39.

Rs

1 2
rπ1

RE1

gm1vπ1

rπ2 gm2V̂π2

3(Vout)

RC2

RF

Vs

Rs

+

−

vπ2

+ −vπ1

Figure 39: Small-signal model of the buffered feedback circuit

This circuit is evaluated quickly without excessive explanations, which can



9 HYPER BONUS: BUFFERED FEEDBACK CIRCUIT 49

be found from previous sections if needed. For this circuit we select V̂π2 as

the central controlled source used for analysis.

The t21 feedback parameter is evaluated from the circuit shown in Figure 40.

Rs

1

RF

rπ1

RE

2

rπ2

gmV̂π

Vs

Rs

+ −vπ

Figure 40: Small-signal model for evaluating feedback parameter t21

The corresponding matrix equation, after moving the controlled source term

into the admittance matrix, is











1

Rs

+
1

RF

+
1

rπ1
−

1

rπ1

−
βF1 + 1

rπ1

βF1 + 1

rπ1
+

1

RE

+
1

rπ2











×









V1

V2









=









Vs

Rs

0









.

Here the feedback parameter t21 is solved for V2 = vπ2 as

t21 =
vπ2

Vs

=
RF rπ2(βF1 + 1)RE1

(Rs +RF )[(βF1 + 1)RE1rπ2 + rπ1rπ2 + rπ1RE1] +RsRF (rπ2 +RE1)
,

because V̂π2 was chosen as the base source for analysis.

Next we need a small-signal model to solve the return ratio T and the feed-

back factor t12. This circuit is presented in Figure 41.

The return ratio T and the feedback factor t12 can be solved from the fol-

lowing matrix equation, which is obtained from Figure 41. The controlled

source of gm1 has already been transferred into the admittance matrix and



50 9 HYPER BONUS: BUFFERED FEEDBACK CIRCUIT

Rs

1 2
rπ1

RE1

gm1vπ1

rπ2 gm2V̂π2

3(Vout)

RC2

RF

+

−

vπ2

+ −vπ1

Figure 41: Small-signal model for evaluating feedback parameters t12 and T

the base source gm2 is left into the current vector.





















1

Rs

+
1

RF

+
1

rπ1
−

1

rπ1
−

1

RF

−
βF1 + 1

rπ1

βF1 + 1

rπ1
+

1

RE

+
1

rπ2
0

−
1

RF

0
1

RF

+
1

RC2





















×



















V1

V2

V3



















=



















0

0

−gm2V̂π2



















.

Using Cramer’s rule, we get the following results for the needed feedback

parameters:

T = −
vπ2

V̂π2

=
βF2RC2Rs(βF1 + 1)RE1

(RF +RC2)[(βF1 + 1)RE1rπ2 + rπ1rπ2 + rπ1RE1 +Rsrπ2 +RsRE1] +Rs[(βF1 + 1)RE1rπ2 + rπ1rπ2 + rπ1RE1]
.

t12 =
Vout

V̂π2

= −

βF2

rπ2

RC2[(Rs +RF )[(βF1 + 1)RE1rπ2 + rπ1rπ2 + rπ1RE1] +RsRF (rπ2 +RE1)]

(RF +RC2)[(βF1 + 1)RE1rπ2 + rπ1rπ2 + rπ1RE1 +Rsrπ2 +RsRE1] +Rs[(βF1 + 1)RE1rπ2 + rπ1rπ2 + rπ1RE1]
.

From these equation it is possible to solve the gain factor

K = −
RF

Rs

,

which is the same as for the circuit without the buffer infront of the gain

stage.
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With these equations it is possible to form the voltage gain function as

AF = Av =
t11 +KT

1 + T
,

where the feedforward parameter t11 is evaluated from circuit 42 using the

same definitions as presented in the previous sections.

Rs

1 2
rπ1

RE1

gm1vπ1

rπ2

3(Vout)

RC2

RF

Vs

Rs

+

−

vπ2

+ −vπ1

Figure 42: Small-signal model for evaluating feedforward parameter t11

The impedance evaluation is omitted from this context, but it can be easily

done based on the examples given in previous sections. When evaluating the

dead-system impedance, remember to remove source gm2 and keep gm1 in

the circuit to get the input impedance correctly.

Again, the extension to include RE2 in the evaluated feedback equations is

achieved with the trick of assigning rπ2 = rπ2 + (βF2 + 1)RE2. This trick is

also explained better in the previous sections.

10 Notes about breaking the loop for loop gain evalua-

tion

These notes are added after all the calculations have been made. There is the

known rule that the loop can be broken at any point and the end result for

the loop gain must be the same. During the analysis of the wah circuit, which

uses the current-shunt configuration 2, I evaluated the loop gain twice, first

breaking the loop at Q1 and then at Q2. I was expecting to get the same

result, but no, the results were different. Then I started thinking really hard

what are the rules for breaking the loop correctly.
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All the examples here use the controlled current source of the BJT as the

break point of the loop. This is the most useful break point, because we don’t

need to add any extra terminating impedance, which should match the actual

impedance at the break point. Concerning the current-shunt configuration,

one can break the loop as presented, but that is the only way to use the

controlled source as the break point and get the correct result. If we have

an emitter resistor on Q1, we get two βF1Îπ1 terms in the current vector. If

we select to leave the first of these in the current vector and solve, we get a

wrong answer. If we select to leave the second of these in the current vector

and solve, we get the right answer. Why? I see two obvious reasons. When

leaving the second current gain term in the current vector, we are not adding

any new matrix elements in to the admittance matrix (the first gain terms

add themselves into existing matrix elements). Secondly, there are no cross-

matrix terms Y ij on the row of the second current gain term, which directly

indicates that there is no connection to the prior circuit elements, i.e. the

loop is actually broken.

This leads to explain why the loop cannot be broken at Q2 in the current-

shunt configuration. If the first βF2Îπ2 term on row 3 is transferred into the

admittance matrix, second left at the current vector on row 4 and try to solve,

there will be a column full of zeros in the admittance matrix when using

Cramer’s rule to solve the determinant quotient. If the second βF2Îπ2 term

on row 4 is transferred into the admittance matrix, first left at the current

vector on row 3, then we are introducing additional matrix elements to the

admittance matrix and this will lead to the incorrect result. So it appears

that Q2 is not actually within the loop in such a manner that it could be used

for breaking it.

So all is clear up to now, we can use the controlled source as a break point if

we actually notice it to break the connection to the preceding circuit elements

and we are not adding any new matrix elements related to that controlled

source which is used for solving the loop gain. This applies equally to situa-

tions where the BJT has or does not have an emitter resistor. For example, in

the voltage-series configuration, one can break the loop on either Q1 or Q2

and get the same loop gain value.

But how about the examples of the shunt-shunt configuration and the emitter-

follower? In the shunt-shunt configuration loop gain matrix, on row three

there are no references to rπ (broken connection) and no new matrix ele-
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ments are added. All is good.

The emitter follower configuration is a bit of a question mark. Now new

matrix elements are added, but there is a reference to rπ on row two, which

implies that the loop (what ever it might be in this case) is not broken. Maybe

this is a special case where there is no loop at all.

So, as a main rule for loop gain evaluations by breaking the loop at the BJT

controlled-source: Leave the single current gain factor into such a row, where

there is no reference to preceding rπ and make sure that the possible other

terms related to the same BJT are moved into the admittance matrix without

adding any new matrix elements. These are the conclusions so far.

These thoughts also lead to believe that it is not always possible to break

the loop at a controlled source. Then one must take the hard way and for

example use the method where the loop gain is evaluated twice in open

circuit and short circuit conditions and their reciprocal sum gives the loop

gain. This method is very suitable when evaluating the loop gain with SPICE.

More information on this method one can read from the Microelectronics

book of Sedra and Smith, 6th edition.

11 Octave scripts

% EXAMPLE OCTAVE SCRIPT FOR Current-Shunt AMPLIFIER

clear all

clc

% component value definitions

RS = 10000;

RC1 = 2000;

RC2 = 2000;

RE2 = 500;

RF = 10000;

rpi1 = 500;

rpi2 = 500;

B1 = 100;

B2 = 100;

gm = B1/rpi1;

B = 100;

RP = RS*rpi1/(RS+rpi1);

% t11 (dead system gain)

t11 = Io_Is = -(RS/RC2)*B2*rpi1*RE2*RC2 / ...
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( (RS*rpi1+RS*RF+rpi1*RF)*(RE2*(B2+1)+rpi2+RC1)+RE2*(rpi2+RC1)*(rpi1+RS) )

% t21

t21 = Ii_Is = RS*(RE2+RF) / ( (RE2+RF)*(RS+rpi1)+RS*rpi1 )

% T (return ratio)

T = Ii_Ii = (RP/rpi1)*(B1*(B2+1)*RE2*RC1) / ( (RF+RE2+RP)*(rpi2+RC1)+(B2+1)*RE2*(RF+RP) )

% t12

t12 = Io_Ii = -(B1*B2*RC1)*(RE2+RF+RP) / ( (RF+RE2+RP)*(rpi2+RC1)+(B2+1)*RE2*(RF+RP) )

% t22

t22 = -T/t12

t22 = (RP/rpi1)*(B1*(B2+1)*RE2*RC1) / ((B1*B2*RC1)*(RE2+RF+RP))

t22_appr = RS*RE2 / ( (RE2+RF)*(RS+rpi1)+RS*rpi1 )

% BETA (reverse transmission factor)

BETA = t22/t21

BETA_appr = t22_appr/t21

BETA_appr = RE2/(RE2 + RF)

% K (gain factor)

K = -1/BETA

K_appr = -1/BETA_appr

% Total current gain

A_I = (t11 + K*T)/(1+T)

% T(Rs --> infinity)

T_ID = (B1*(B2+1)*RE2*RC1) / ( (RF+RE2+rpi1)*(rpi2+RC1) + (B2+1)*RE2*(RF+rpi1) )

% ZID and ZIF (dead-system input impedance and input impedance with feedback)

ZID = rpi1*( RF*(RE2*(B2+1)+rpi2+RC1)+RE2*(rpi1+RC1) ) / ...

( (rpi1+RF)*(RE2*(B2+1)+rpi2+RC1)+RE2*(rpi2+RC1) )

ZID_appr = rpi1*(RF+RE2) / (rpi1+RF+RE2)

ZIF = ZID/(1+T_ID)

% ZO (output impedance with feedback) this simply equals RC2

% EXAMPLE OCTAVE SCRIPT FOR Voltage-Series AMPLIFIER

clear all

clc

% component value definitions

rpi1 = 5000;
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B01 = 125;

rpi2 = 2500;

B02 = 125;

gm1 = B01/rpi1;

gm2 = B02/rpi2;

RC1 = 9000;

RC2 = 3000;

RE = 200;

RF = 6000;

RS = 2500;

RL1 = RC1*rpi2/(RC1+rpi2);

Rx = RE*(RF+RC2)/( RE+RF+RC2);

% t11 (dead system gain)

t11 = V0_Vs = RC2*(B01+1)*RE / ( (RC2+RF)*(RE*(B01+1)+rpi1+RS)+RE*(rpi1+RS) )

% t21

t21 = Vi_Vs = rpi1*(RF+RE) / ( (rpi1+RS)*(RE+RF)+(B01+1)*RE*RF )

% T (return ratio)

T = Vi_Vi = ( RE*(B01*RC1*B02*RC2)/(RC1+rpi2) )/( (RC2+RF+RE)*(rpi1+RS)+(B01+1)*RE*(RC2+RF) )

% t12

t12 = ( (B01*RC1*B02*RC2)/(RC1+rpi2) )*( ((rpi1+RS)*(RE+RF)+(B01+1)*RE*RF)/rpi1 ) / ...

( (RC2+RF+RE)*(rpi1+RS)+(B01+1)*RE*(RC2+RF) )

% t22

t22 = -T/t12

t22 = -rpi1*RE/( (rpi1+RS)*(RE+RF)+(B01+1)*RE*RF )

% BETA (reverse transmission factor)

BETA = t22/t21

BETA = -RE/(RE + RF)

% K (gain factor)

K = -1/BETA

% Total voltage gain

Av = (t11 + K*T)/(1+T)

% T(Rs --> 0)

T_ID = ( RE*(B01*RC1*B02*RC2)/(RC1+rpi2) ) / ( (RC2+RF+RE)*rpi1+(B01+1)*RE*(RC2+RF) )

% ZID and ZIF (dead-system input impedance and input impedance with feedback)

ZID = rpi1 + ( (RC2+RF)*RE*(B01+1) / (RC2+RF+RE) )
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ZIF = ZID*(1+T_ID)

% T(RC2 --> infinity)

T_OD = ( RE*(B01*RC1*B02)/(RC1+rpi2) ) / ( (rpi1+RS)+(B01+1)*RE )

% ZOD and ZOF (dead-system output impedance and output impedance with feedback)

ZOD = RF + ( RE*( (rpi1+RS)/(B01+1) ) / ( RE+( (rpi1+RS)/(B01+1) ) ) )

ZOF = ZOD/(1+T_OD)
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